def read_split(split): test_fname = 'test'+str(split)+'.txt' part_dat = False df_test = create_df(os.path.join(datapath, test_fname), img_path, partial_dataset=part_dat, seed=123) return df_test
def read_split_to_dfs(split): train_fname = 'train' + str(split) + '.txt' test_fname = 'test' + str(split) + '.txt' val_fname = 'val' + str(split) + '.txt' part_dat = False df_train = create_df(os.path.join(datapath, train_fname), img_path, partial_dataset=part_dat, seed=123) df_test = create_df(os.path.join(datapath, test_fname), img_path, partial_dataset=part_dat, seed=123) df_val = create_df(os.path.join(datapath, val_fname), img_path, partial_dataset=part_dat, seed=123) return df_train, df_test, df_val
#Load the ready-made splits if platform.system() == 'Linux': datapath = '/home/mikko/Documents/kandi/data/IDA/Separate lists with numbering/Machine learning splits' img_path = '/home/mikko/Documents/kandi/data/IDA/Images/' else: datapath = 'C:\\koodia\\kandi\\FIN Benthic2\\IDA\\Separate lists with numbering\\Machine learning splits' img_path = 'C:\\koodia\\kandi\\FIN Benthic2\\IDA\\Images\\' split = 1 test_fname = 'test'+str(split)+'.txt' part_dat = True df_test = create_df(os.path.join(datapath, test_fname), img_path, partial_dataset=part_dat, seed=123) #%% Loading in memory import tensorflow as tf def create_tf_img(fname, imsize): img = tf.io.read_file(fname) img = tf.image.decode_jpeg(img, channels=3) img = tf.image.convert_image_dtype(img, tf.float32) return tf.image.resize(img, imsize[0:-1]) def load_images(df, img_path, imsize=(224,224,3)): imglist = df.loc[:,"path"].tolist()