示例#1
0
def predict(language_dist,comment):
    nLanguages=3
    n=3
    LANGUAGES=list(set(['fr','es','ru']))
    print("implementing SVM ranking")
    X=np.loadtxt('X.txt')
    Y=np.loadtxt('Y.txt')
    weights=SVM(X,Y,nLanguages,n)
    developmentData=loader.loaderShuffleDataTest()
    computeFeatures(developmentData,language_dist,LANGUAGES,1)
    
     
    Ypredict=weights.predict(comment)
    
        
        
    if Ypredict==0:
       return "French"
    if Ypredict==1:
        return "Spanish"
    else:
        return "Russian"
    
    
                
            
    precision=nCorrect/len(Y)
    print("Precision is equal to "+str(precision)+"on "+str(nbPrediction)+" comments")
    print(str(ncorrectEnglish)+" english correct on "+str(nEnglish))
    print(str(ncorrectFrench)+" english correct on "+str(nFrench))
    print(str(ncorrectRussian)+" english correct on "+str(nRussian))
示例#2
0
#    for i in range(0,n):
#        j=0
#        for language in LANGUAGES:
#            NumbersWords[i,j]=sum(language_dist[language]['words'][i+1].values())
#            j=j+1
#    #print NumbersWords
#    #training features
#    print ("Starting loaderShuffleData")
#    trainData=loader.loaderShuffleData()
#    print ("computing X and Y matrices")
#    computeFeatures(trainData,language_dist,LANGUAGES,NumbersWords,0)
    print("implementing SVM ranking")
    X=np.loadtxt('Xtrain.txt')
    Y=np.loadtxt('Ytrain.txt')
    weights=SVM(X,Y,nLanguages,n)
    developmentData=loader.loaderShuffleDataTest()
    computeFeatures(developmentData,language_dist,LANGUAGES,1)
    X=np.loadtxt('Xtest.txt')
    Y=np.loadtxt('Ytest.txt')
    nbPrediction=len(Y)    
    Ypredict=weights.predict(X)
    precision=0
    nCorrect=0
    for i in range(len(Y)):
        if Ypredict[i]==Y[i]:
            nCorrect=nCorrect+1
            
    precision=nCorrect/len(Y)
    print("Precision is equal to "+str(precision)+"on "+str(nbPrediction)+" comments")
#    LANGUAGES = list(set(['english', 'french', 'german']))
#    for language in LANGUAGES: