示例#1
0
def fusion_val(size,
               down_factor,
               lfw_bs,
               device,
               srnet,
               fnet,
               lr_fnet,
               net=None,
               step=None):
    net.eval()
    net.setVal(True)
    assert down_factor >= 1, 'Downsampling factor should be >= 1.'
    tensor_norm = tensor_sface_norm
    dataloader = lfw_loader.get_loader(size, down_factor, 96, 112, lfw_bs)
    features11_total, features12_total = [], []
    features21_total, features22_total = [], []
    labels = []
    with torch.no_grad():
        bs_total = 0
        for index, (img1, img2, img1_flip, img2_flip,
                    targets) in enumerate(tqdm(dataloader, ncols=0)):
            bs = len(targets)
            img1, img1_flip = img1.to(device), img1_flip.to(device)
            img2, img2_flip = img2.to(device), img2_flip.to(device)

            down_f = torch.ones(size=(bs, 1, 1, 1)).to('cuda:0')
            down_f *= 1 / 16
            down_f2 = 1 / down_f / 16
            down_f = torch.cat([down_f, down_f2], dim=1)
            # img1, img1_flip = tensor_norm(img1), tensor_norm(img1_flip)
            features11 = get_fusion_feature(None, fnet, lr_fnet, net, img1,
                                            down_f)
            features12 = get_fusion_feature(None, fnet, lr_fnet, net,
                                            img1_flip, down_f)

            down_f = torch.ones(size=(bs, 1, 1, 1)).to('cuda:0')
            down_f *= index / 16
            down_f2 = 1 / down_f / 16
            down_f = torch.cat([down_f, down_f2], dim=1)
            features21 = get_fusion_feature(srnet, fnet, lr_fnet, net, img2,
                                            down_f)
            features22 = get_fusion_feature(srnet, fnet, lr_fnet, net,
                                            img2_flip, down_f)
            features11_total += [features11]
            features12_total += [features12]
            features21_total += [features21]
            features22_total += [features22]
            labels += [targets]
            bs_total += bs
        features11_total = torch.cat(features11_total)
        features12_total = torch.cat(features12_total)
        features21_total = torch.cat(features21_total)
        features22_total = torch.cat(features22_total)
        labels = torch.cat(labels)
        assert bs_total == 6000, print('LFW pairs should be 6,000')
    labels = labels.cpu().numpy()
    scores = tensor_pair_cosine_distance(features11_total,
                                         features12_total,
                                         features21_total,
                                         features22_total,
                                         type='concat')
    accuracy = []
    thd = []
    folds = KFold(n=6000, n_folds=10, shuffle=False)
    thresholds = np.linspace(-10000, 10000, 10000 + 1)
    thresholds = thresholds / 10000
    predicts = np.hstack((scores, labels))
    for idx, (train, test) in enumerate(folds):
        best_thresh = find_best_threshold(thresholds, predicts[train])
        accuracy.append(eval_acc(best_thresh, predicts[test]))
        thd.append(best_thresh)
    mean_acc, std = np.mean(accuracy), np.std(accuracy)
    if step is not None:
        message = 'LFWACC={:.4f} std={:.4f} at {}iter.'.format(
            mean_acc, std, step)
    else:
        message = 'LFWACC={:.4f} std={:.4f} at testing.'.format(mean_acc, std)
    if size != -1:
        message += '(down_factor: {}x{})'.format(size, size)
    else:
        message += '(down_factor:{} {}x{})'.format(down_factor,
                                                   round(112 / down_factor),
                                                   round(96 / down_factor))

    print(message)
    net.setVal(False)
    # if step is not None:
    #     log_name = os.path.join(args.checkpoints_dir, args.name, 'loss_log.txt')
    #     with open(log_name, "a") as log_file:
    #         log_file.write('\n' + message)
    return mean_acc
示例#2
0
def val_raw_se(fnet_type,
               size,
               down_factor,
               w,
               h,
               lfw_bs,
               device,
               fnet,
               srnet=None,
               step=None):
    fnet.eval()
    if srnet is not None:
        srnet.eval()
    assert down_factor >= 1, 'Downsampling factor should be >= 1.'
    if fnet_type == 'sface':
        tensor_norm = tensor_sface_norm
    dataloader = lfw_loader.get_loader(size, down_factor, w, h, lfw_bs)
    features11_total, features12_total = [], []
    features21_total, features22_total = [], []
    labels = []
    with torch.no_grad():
        bs_total = 0
        for index, (img1, img2, img1_flip, img2_flip,
                    targets) in enumerate(tqdm(dataloader, ncols=0)):
            bs = len(targets)
            img1, img1_flip = img1.to(device), img1_flip.to(device)
            img2, img2_flip = img2.to(device), img2_flip.to(device)

            down_f = torch.ones(size=(bs, 1, 1, 1)).to('cuda:0')
            down_f *= index / 16
            down_f2 = 1 / down_f / 16
            down_f = torch.cat([down_f, down_f2], dim=1)
            img2, img2_flip = srnet(img2, down_f), srnet(img2_flip, down_f)
            img2 = tensors_cvBicubic_resize(h, w, device, img2)
            img2_flip = tensors_cvBicubic_resize(h, w, device, img2_flip)
            img1, img1_flip = tensor_norm(img1), tensor_norm(img1_flip)
            img2, img2_flip = tensor_norm(img2), tensor_norm(img2_flip)
            features11 = fnet(img1)
            features12 = fnet(img1_flip)
            features21 = fnet(img2)
            features22 = fnet(img2_flip)
            features11_total += [features11]
            features12_total += [features12]
            features21_total += [features21]
            features22_total += [features22]
            labels += [targets]
            bs_total += bs
        features11_total = torch.cat(features11_total)
        features12_total = torch.cat(features12_total)
        features21_total = torch.cat(features21_total)
        features22_total = torch.cat(features22_total)
        labels = torch.cat(labels)
        assert bs_total == 6000, print('LFW pairs should be 6,000')
    labels = labels.cpu().numpy()
    scores = tensor_pair_cosine_distance(features11_total,
                                         features12_total,
                                         features21_total,
                                         features22_total,
                                         type='concat')
    accuracy = []
    thd = []
    folds = KFold(n=6000, n_folds=10, shuffle=False)
    thresholds = np.linspace(-10000, 10000, 10000 + 1)
    thresholds = thresholds / 10000
    predicts = np.hstack((scores, labels))
    for idx, (train, test) in enumerate(folds):
        best_thresh = find_best_threshold(thresholds, predicts[train])
        accuracy.append(eval_acc(best_thresh, predicts[test]))
        thd.append(best_thresh)
    mean_acc, std = np.mean(accuracy), np.std(accuracy)
    if step is not None:
        message = 'LFWACC={:.4f} std={:.4f} at {}iter.'.format(
            mean_acc, std, step)
    else:
        message = 'LFWACC={:.4f} std={:.4f} at testing.'.format(mean_acc, std)
    if size != -1:
        message += '(down_factor: {}x{})'.format(size, size)
    else:
        message += '(down_factor:{} {}x{})'.format(down_factor,
                                                   round(112 / down_factor),
                                                   round(96 / down_factor))

    print(message)
    return mean_acc
示例#3
0
def run(fnet_type,
        size,
        down_factor,
        w,
        h,
        lfw_bs,
        device,
        fnet,
        net=None,
        step=None):
    fnet.eval()
    if net is not None:
        net.eval()
    assert down_factor >= 1, 'Downsampling factor should be >= 1.'
    if fnet_type == 'sface':
        tensor_norm = tensor_sface_norm
    dataloader = lfw_loader.get_loader(size, down_factor, w, h, lfw_bs)
    features11_total, features12_total = [], []
    features21_total, features22_total = [], []
    labels = []
    with torch.no_grad():
        bs_total = 0
        for index, (img1, img2, img1_flip, img2_flip,
                    targets) in enumerate(tqdm(dataloader, ncols=0)):
            bs = len(targets)
            img1, img1_flip = img1.to(device), img1_flip.to(device)
            img2, img2_flip = img2.to(device), img2_flip.to(device)
            img1, img1_flip = tensor_norm(img1), tensor_norm(img1_flip)
            features11 = fnet(img1)
            features12 = fnet(img1_flip)
            w = torch.full([img2.shape[0], 1], img2.shape[2]).to(device)
            h = torch.full([img2.shape[0], 1], img2.shape[3]).to(device)
            features21, _ = net(img2, w, h)
            w = torch.full([img2_flip.shape[0], 1],
                           img2_flip.shape[2]).to(device)
            h = torch.full([img2_flip.shape[0], 1],
                           img2_flip.shape[3]).to(device)
            features22, _ = net(img2_flip, w, h)
            features11_total += [features11]
            features12_total += [features12]
            features21_total += [features21]
            features22_total += [features22]
            labels += [targets]
            bs_total += bs
        features11_total = torch.cat(features11_total)
        features12_total = torch.cat(features12_total)
        features21_total = torch.cat(features21_total)
        features22_total = torch.cat(features22_total)
        labels = torch.cat(labels)
        assert bs_total == 6000, print('LFW pairs should be 6,000')
    labels = labels.cpu().numpy()
    scores = tensor_pair_cosine_distance(features11_total,
                                         features12_total,
                                         features21_total,
                                         features22_total,
                                         type='concat')
    accuracy = []
    thd = []
    folds = KFold(n=6000, n_folds=10, shuffle=False)
    thresholds = np.linspace(-10000, 10000, 10000 + 1)
    thresholds = thresholds / 10000
    predicts = np.hstack((scores, labels))
    for idx, (train, test) in enumerate(folds):
        best_thresh = find_best_threshold(thresholds, predicts[train])
        accuracy.append(eval_acc(best_thresh, predicts[test]))
        thd.append(best_thresh)
    mean_acc, std = np.mean(accuracy), np.std(accuracy)
    if step is not None:
        message = 'LFWACC={:.4f} std={:.4f} at {}iter.'.format(
            mean_acc, std, step)
    else:
        message = 'LFWACC={:.4f} std={:.4f} at testing.'.format(mean_acc, std)
    if size != -1:
        message += '(down_factor: {}x{})'.format(size, size)
    else:
        message += '(down_factor:{} {}x{})'.format(down_factor,
                                                   round(112 / down_factor),
                                                   round(96 / down_factor))

    print(message)
    # if step is not None:
    #     log_name = os.path.join(args.checkpoints_dir, args.name, 'loss_log.txt')
    #     with open(log_name, "a") as log_file:
    #         log_file.write('\n' + message)
    return mean_acc
示例#4
0
def val_sesface_self(size,
                     w,
                     h,
                     lfw_bs,
                     device,
                     fnet,
                     net,
                     step=None,
                     index=1):
    net.eval()
    fnet.eval()
    tensor_norm = tensor_sface_norm
    dataloader = lfw_loader.get_loader(size, index, w, h, lfw_bs)
    features11_total, features12_total = [], []
    features21_total, features22_total = [], []
    labels = []
    with torch.no_grad():
        bs_total = 0
        for i, (img1, img2, img1_flip, img2_flip,
                targets) in enumerate(tqdm(dataloader, ncols=0)):
            bs = len(targets)
            img1, img1_flip = img1.to(device), img1_flip.to(device)
            img2, img2_flip = img2.to(device), img2_flip.to(device)
            img2 = functional.interpolate(img2,
                                          size=(112, 96),
                                          mode='bilinear',
                                          align_corners=False)
            img2_flip = functional.interpolate(img2_flip,
                                               size=(112, 96),
                                               mode='bilinear',
                                               align_corners=False)

            img1, img1_flip = tensor_norm(img1), tensor_norm(img1_flip)
            img2, img2_flip = tensor_norm(img2), tensor_norm(img2_flip)
            #features11 = fnet(img1)
            #features12 = fnet(img1_flip)
            down_factor = torch.ones(size=(bs, 2, 1, 1)).to('cuda:0')
            down_factor[:][0] *= index / 8.0
            down_factor[:][1] *= 1 / index
            features11 = net(img1, down_factor)
            features12 = net(img1_flip, down_factor)
            features21 = net(img2, down_factor)
            features22 = net(img2_flip, down_factor)
            features11_total += [features11]
            features12_total += [features12]
            features21_total += [features21]
            features22_total += [features22]
            labels += [targets]
            bs_total += bs
        features11_total = torch.cat(features11_total)
        features12_total = torch.cat(features12_total)
        features21_total = torch.cat(features21_total)
        features22_total = torch.cat(features22_total)
        labels = torch.cat(labels)
        assert bs_total == 6000, print('LFW pairs should be 6,000')
    labels = labels.cpu().numpy()
    scores = tensor_pair_cosine_distance(features11_total,
                                         features12_total,
                                         features21_total,
                                         features22_total,
                                         type='concat')
    accuracy = []
    thd = []
    folds = KFold(n=6000, n_folds=10, shuffle=False)
    thresholds = np.linspace(-10000, 10000, 10000 + 1)
    thresholds = thresholds / 10000
    predicts = np.hstack((scores, labels))
    for idx, (train, test) in enumerate(folds):
        best_thresh = find_best_threshold(thresholds, predicts[train])
        accuracy.append(eval_acc(best_thresh, predicts[test]))
        thd.append(best_thresh)
    mean_acc, std = np.mean(accuracy), np.std(accuracy)
    if step is not None:
        message = 'LFWACC={:.4f} std={:.4f} at {}iter.'.format(
            mean_acc, std, step)
    else:
        message = 'LFWACC={:.4f} std={:.4f} at testing.'.format(mean_acc, std)

    if size != -1:
        message += '(down_factor: {}x{})'.format(size, size)
    else:
        message += '(down_factor:{} {}x{})'.format(index, round(112 / index),
                                                   round(96 / index))
    print(message)
    # if step is not None:
    #     log_name = os.path.join(args.checkpoints_dir, args.name, 'loss_log.txt')
    #     with open(log_name, "a") as log_file:
    #         log_file.write('\n' + message)
    return mean_acc
示例#5
0
        torch.load(
            '/content/drive/MyDrive/app2/sesface_4_13/sesface_backup_epoch13.pth'
        )['net'])
    lr_fnet.to(args.device)
    lr_fnet.setVal(True)
    common.freeze(lr_fnet)
    fnet.eval()
    srnet.eval()
    lr_fnet.eval()
    return fnet, srnet, lr_fnet


if __name__ == '__main__':
    args = train_args.get_args()
    fnet, srnet, lr_fnet = initModels()
    dataloader = lfw_loader.get_loader(-1, 8, 96, 112, args.bs)

    bar = tqdm(dataloader, total=len(dataloader), ncols=0)
    all_data = None
    for batch_id, inputs in enumerate(bar):
        img1, _, img1_flip, _, _ = inputs
        img1 = img1.to(args.device)
        img1_flip = img1_flip.to(args.device)
        down_f = torch.ones(size=(args.bs, 2, 1, 1)).to('cuda:0')
        feature1, feature2 = fusion_model.getFeatures(srnet, fnet, lr_fnet,
                                                      img1, down_f)
        data = torch.cat([feature1, feature2], dim=1)
        feature1, feature2 = fusion_model.getFeatures(srnet, fnet, lr_fnet,
                                                      img1_flip, down_f)
        data = torch.cat([data, feature1, feature2], dim=1)
        if all_data is None: