def logging(model, starttime, batch_size, nb_epoch, conv_arch,dense, dropout, X_shape, y_shape, train_acc, val_acc, dirpath): now = time.ctime() model.save_weights('./') save_model(model.to_json(), now, dirpath) save_config(model.get_config(), now, dirpath) save_result(starttime, batch_size, nb_epoch, conv_arch, dense, dropout, X_shape, y_shape, train_acc, val_acc, dirpath)
def logging(model, starttime, batch_size, nb_epoch, conv_arch,dense, dropout, X_shape, y_shape, train_acc, val_acc, dirpath): now = time.ctime() model.save_weights('../data/weights/{}'.format(now)) save_model(model.to_json(), now, dirpath) save_config(model.get_config(), now, dirpath) save_result(starttime, batch_size, nb_epoch, conv_arch, dense, dropout, X_shape, y_shape, train_acc, val_acc, dirpath)
model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors model.add(Dense(64, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(2, activation='softmax')) # optimizer: model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print('Training....') model.fit(X_train, y_train, nb_epoch=nb_epoch, batch_size=batch_size, validation_split=0.3, shuffle=True, verbose=1) # set callback: https://github.com/sallamander/headline-generation/blob/master/headline_generation/model/model.py # model result: loss_and_metrics = model.evaluate(X_train, y_train, batch_size=batch_size, verbose=1) print ('Done!') print ('Loss: ', loss_and_metrics[0]) print (' Acc: ', loss_and_metrics[1]) # model logging: notes = 'medium set 100' save_model(model.to_json(), '../data/results/') save_config(model.get_config(), '../data/results/') save_result(loss_and_metrics, notes, '../data/results/')
print('Training....') #With validation #hist = model.fit(X_train, y_train, nb_epoch=nb_epoch, batch_size=batch_size # , validation_data=(X_val, y_val), shuffle=True, verbose=1) #Without validation hist = model.fit(X_train, y_train, nb_epoch=nb_epoch, batch_size=batch_size, shuffle=True, verbose=1) print(model.summary()) train_val_accuracy = hist.history # set callback: https://github.com/sallamander/headline-generation/blob/master/headline_generation/model/model.py # model result: loss_and_metrics = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=1) print('Loss: ', loss_and_metrics[0]) print(' Acc: ', loss_and_metrics[1]) print(hist.history.keys()) # model logging: notes = 'medium set 100' save_model(model, './data/results/') save_history(train_val_accuracy, './data/results/') #save_config(model.get_config(), './data/results/') save_result(train_val_accuracy, loss_and_metrics, notes, './data/results/')
model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) model.add(Convolution2D(128, 3, 3, border_mode='same', activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors model.add(Dense(64, activation='relu')) model.add(Dense(64, activation='relu')) model.add(Dense(2, activation='softmax')) # optimizer: model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print 'Training....' model.fit(X_train, y_train, nb_epoch=nb_epoch, batch_size=batch_size, validation_split=0.3, shuffle=True, verbose=1) # set callback: https://github.com/sallamander/headline-generation/blob/master/headline_generation/model/model.py # model result: loss_and_metrics = model.evaluate(X_train, y_train, batch_size=batch_size, verbose=1) print 'Done!' print 'Loss: ', loss_and_metrics[0] print ' Acc: ', loss_and_metrics[1] # model logging: notes = 'medium set 100' save_model(model.to_json(), '../data/results/') save_config(model.get_config(), '../data/results/') save_result(loss_and_metrics, notes, '../data/results/')