示例#1
0
def model_predict(query, data=None, model=None, test=False):
    """
    example funtion to predict from model
    """

    country = query['country']
    year = query['year']
    month = query['month']
    day = query['day']

    # start timer for runtime
    time_start = time.time()

    for d in [year, month, day]:
        if re.search("\D", d):
            raise Exception(
                "ERROR (model_predict) - invalid year, month or day")

    target_date = "{}-{}-{}".format(year,
                                    str(month).zfill(2),
                                    str(day).zfill(2))

    if target_date not in data['dates']:
        raise Exception(
            "ERROR (model_predict) - date {} not in range {}-{}".format(
                target_date, data['dates'][0], data['dates'][-1]))
    date_indx = np.where(data['dates'] == target_date)[0][0]
    query = data['X'].iloc[[date_indx]]

    ## sainty check
    if data['dates'].shape[0] != data['X'].shape[0]:
        raise Exception("ERROR (model_predict) - dimensions mismatch")

    ## make prediction and gather data for log entry
    y_pred = model.predict(query)
    y_proba = None
    if 'predict_proba' in dir(model) and 'probability' in dir(model):
        if model.probability == True:
            y_proba = model.predict_proba(query)

    m, s = divmod(time.time() - time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d" % (h, m, s)

    # update predict log
    update_predict_log(country,
                       y_pred,
                       y_proba,
                       target_date,
                       runtime,
                       MODEL_VERSION,
                       test=test)

    return ({'y_pred': y_pred, 'y_proba': y_proba})
示例#2
0
def model_predict(query, model=None, test=False):
    """
    example funtion to predict from model
    """

    ## start timer for runtime
    time_start = time.time()

    query = pd.DataFrame(query)

    ## input checks
    if isinstance(query, dict):
        query = pd.DataFrame(query)
    elif isinstance(query, pd.DataFrame):
        pass
    else:
        raise Exception(
            "ERROR (model_predict) - invalid input. {} was given".format(
                type(query)))

    # ## features check
    # features = sorted(query.columns.tolist())
    # if features != ['age', 'country', 'num_streams', 'subscriber_type']:
    #     print("query features: {}".format(",".join(features)))
    #     raise Exception("ERROR (model_predict) - invalid features present")

    ## load model if needed
    if not model:
        model = model_load()

    ## output checking
    if len(query.shape) == 1:
        query = query.reshape(1, -1)

    print(query)

    ## make prediction and gather data for log entry
    y_pred = model.predict(query)
    y_proba = 'None'

    m, s = divmod(time.time() - time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d" % (h, m, s)

    ## update the log file
    for i in range(query.shape[0]):
        update_predict_log(y_pred[i],
                           y_proba,
                           query.iloc[i].values.tolist(),
                           runtime,
                           MODEL_VERSION,
                           test=test)

    return ({'y_pred': y_pred, 'y_proba': y_proba})
示例#3
0
    def test_log_prediction(self):
        """
        Ensure that content can be retrieved from log file
        """

        log_file = os.path.join("logs", "predict-test.log")

        ## update the log
        y_pred = 100
        runtime = "00:00:02"
        model_version = 0.1
        model_note = "Prophet"
        test = True
        update_predict_log(y_pred, runtime, model_version, model_note, test)

        self.assertTrue(os.path.exists(log_file))
示例#4
0
    def test_04_predict(self):
        """
        ensure that content can be retrieved from log file
        """
        today = date.today()
        log_file = os.path.join(
            LOG_DIR, "predict-{}-{}.log".format(today.year, today.month))

        ## update the log
        y_pred = [0]
        runtime = "00:00:02"
        model_version = 0.1

        update_predict_log(y_pred, runtime, model_version, None, test=False)

        df = pd.read_csv(log_file)
        logged_y_pred = df['y_pred'].iloc[-1]
        self.assertEqual(str(y_pred), logged_y_pred)
示例#5
0
    def test_03_predict(self):
        """
        ensure log file is created
        """
        today = date.today()
        log_file = os.path.join(
            LOG_DIR, "predict-{}-{}.log".format(today.year, today.month))
        if os.path.exists(log_file):
            os.remove(log_file)

        ## update the log
        y_pred = [0]
        runtime = "00:00:02"
        model_version = 0.1

        update_predict_log(y_pred, runtime, model_version, None, test=False)

        self.assertTrue(os.path.exists(log_file))
示例#6
0
def model_predict(country, year, month, day, model, model_data, test=False):
    """
    example function to predict from model
    """

    # start timer for runtime
    time_start = time.time()

    if not model:
        raise Exception("ERROR (model_predict) - model missing")
    for d in [year, month, day]:
        if re.search("\D", d):
            raise Exception("ERROR (model_predict) - invalid year, month or day")

    ## check date
    target_date = f"{year}-{str(month).zfill(2)}-{str(day).zfill(2)}"

    if target_date not in model_data['dates']:
        raise Exception(f"ERROR (model_predict) - date {target_date} not in range "
                        f"{model_data['dates'][0]}-{model_data['dates'][-1]}")
    date_index = np.where(model_data['dates'] == target_date)[0][0]
    query = model_data['X'].iloc[[date_index]]

    y_known = model_data['y'][query.index]

    # sainty check
    if model_data['dates'].shape[0] != model_data['X'].shape[0]:
        raise Exception("ERROR (model_predict) - dimensions mismatch")

    # make prediction and gather data for log entry
    y_pred = model.predict(query)
    y_proba = None
    if 'predict_proba' in dir(model) and 'probability' in dir(model):
        if model.probability == True:
            y_proba = model.predict_proba(query)

    m, s = divmod(time.time() - time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d" % (h, m, s)

    ## update predict log
    update_predict_log(country, y_pred, y_proba, target_date, runtime, MODEL_VERSION, test=test)

    return {'country':country, 'target_date':target_date,'y_known':y_known, 'y_pred': y_pred, 'y_proba': y_proba}
示例#7
0
def model_predict(query, model=None):
    """
    example funtion to predict from model
    """

    ## start timer for runtime
    time_start = time.time()

    ## input checks
    if isinstance(query, dict):
        query = pd.DataFrame(query)
    elif isinstance(query, pd.DataFrame):
        pass
    else:
        raise Exception(
            "ERROR (model_predict) - invalid input. {} was given".format(
                type(query)))

    ## load model if needed
    if not model:
        model = model_load()

    ## output checking
    if len(query.shape) == 1:
        query = query.reshape(1, -1)

    ## make prediction and gather data for log entry
    y_pred = model.predict(query)
    y_proba = model.predict_proba(query)

    m, s = divmod(time.time() - time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d" % (h, m, s)

    for i in range(query.shape[0]):
        update_predict_log(y_pred[i],
                           y_proba,
                           query.iloc[i].values.tolist(),
                           runtime,
                           MODEL_VERSION,
                           test=False)

    return ({'y_pred': y_pred, 'y_proba': y_proba})
示例#8
0
    def test_03_predict(self):
        """
        ensure log file is created
        """

        log_file = os.path.join("logs","predict-test.log")
        if os.path.exists(log_file):
            os.remove(log_file)
        
        ## update the log
        y_pred = [0]
        y_proba = [0.6,0.4]
        runtime = "00:00:02"
        model_version = 0.1
        query = ['united_states', 24, 'aavail_basic', 8]

        update_predict_log(y_pred,y_proba,query,runtime,
                           model_version, test=True)
        
        self.assertTrue(os.path.exists(log_file))
示例#9
0
    def test_04_predict(self):
        """
        ensure that content can be retrieved from log file
        """

        log_file = os.path.join("logs","predict-test.log")

        ## update the log
        country = 'ERIE'
        y_pred = [15000]
        y_proba = None
        target_date = '2018-01-05'
        runtime = "00:00:02"
        MODEL_VERSION = 0.1

        update_predict_log(country,y_pred,y_proba,target_date,runtime, MODEL_VERSION, test=True)

        df = pd.read_csv(log_file)
        logged_y_pred = [literal_eval(i) for i in df['y_pred'].copy()][-1]
        self.assertEqual(y_pred,logged_y_pred)
示例#10
0
    def test_04_predict(self):
        """
        ensure that content can be retrieved from log file
        """

        log_file = os.path.join("logs","predict-test.log")

        ## update the log
        y_pred = [0]
        y_proba = [0.6,0.4]
        runtime = "00:00:02"
        model_version = 0.1
        query = ['united_states', 24, 'aavail_basic', 8]

        update_predict_log(y_pred,y_proba,query,runtime,
                           model_version, test=True)

        df = pd.read_csv(log_file)
        logged_y_pred = [literal_eval(i) for i in df['y_pred'].copy()][-1]
        self.assertEqual(y_pred,logged_y_pred)
示例#11
0
    def test_03_predict(self):
        """
        ensure log file is created
        """

        log_file = os.path.join("logs","predict-test.log")
        if os.path.exists(log_file):
            os.remove(log_file)

        ## update the log
        country = 'ERIE'
        y_pred = [15000]
        y_proba = None
        target_date = '2018-01-05'
        runtime = "00:00:02"
        MODEL_VERSION = 0.1

        update_predict_log(country,y_pred,y_proba,target_date,runtime, MODEL_VERSION, test=True)

        self.assertTrue(os.path.exists(log_file))
    def test_04_predict(self):
        """
        ensure that content can be retrieved from log file
        """

        log_file = os.path.join("logs", "predict-test.log")

        ## update the log
        country = 'united states'
        y_pred = [0]
        y_proba = [0.6, 0.4]
        target_date = 24
        runtime = "00:00:02"
        model_version = 0.1

        update_predict_log(country, y_pred, y_proba, target_date, runtime,
                           model_version, test=True)

        df = pd.read_csv(log_file)
        logged_y_pred = [literal_eval(i) for i in df['y_pred'].copy()][-1]
        self.assertEqual(y_pred, logged_y_pred)
示例#13
0
    def test_04_predict(self):
        """
        ensure that content can be retrieved from log file
        """
        today = date.today()
        log_file = os.path.join(
            "logs", "predict-{}-{}.log".format(today.year, today.month))

        ## update the log
        country = 'United Kingdom'
        y_pred = 40000
        runtime = "00:00:04"
        model_version = 0.1
        target_date = "('2019',)-('08',)-01"

        update_predict_log(country, y_pred, target_date, runtime,
                           model_version)

        df = pd.read_csv(log_file)
        logged_y_pred = [literal_eval(str(i)) for i in df['y_pred'].copy()][-1]
        self.assertEqual(y_pred, logged_y_pred)
示例#14
0
    def test_03_predict(self):
        """
        ensure log file is created
        """
        today = date.today()
        log_file = os.path.join(
            "logs", "predict-{}-{}.log".format(today.year, today.month))
        if os.path.exists(log_file):
            os.remove(log_file)

        ## update the log
        country = 'United Kingdom'
        y_pred = 30000
        runtime = "00:00:03"
        model_version = 0.1
        target_date = "('2019',)-('08',)-01"

        update_predict_log(country, y_pred, target_date, runtime,
                           model_version)

        self.assertTrue(os.path.exists(log_file))
    def test_03_predict(self):
        """
        ensure log file is created
        """

        log_file = os.path.join("logs", "predict-test.log")
        if os.path.exists(log_file):
            os.remove(log_file)
        
        # update the log
        y_pred = [0]
        y_proba = None
        runtime = "00:00:02"
        model_version = 0.1
        country = 'united_kingdom'
        target_date = "2021-01-01"

        update_predict_log(country, y_pred, y_proba, target_date, runtime,
                           model_version, test=True)
        
        self.assertTrue(os.path.exists(log_file))
    def test_03_predict(self):
        """
        ensure log file is created
        """

        log_file = os.path.join("logs", "predict-test.log")
        if os.path.exists(log_file):
            os.remove(log_file)

        ## update the log
        country = 'united states'
        y_pred = [0]
        y_proba = [0.6, 0.4]
        target_date = 24
        runtime = "00:00:02"
        model_version = 0.1

        update_predict_log(country, y_pred, y_proba, target_date, runtime,
                           model_version, test=True)

        self.assertTrue(os.path.exists(log_file))
示例#17
0
    def test_04_predict(self):
        """
        ensure that content can be retrieved from log file
        """

        log_file = os.path.join(log_dir, "predict-test.log")

        # update the log
        prefix = 'unittest'
        country = "all"
        y_pred = [184154.256]
        y_proba = None
        target_date = "2018-01-05"
        runtime = "000:00:35"
        model_version = 0.1
        test = True

        update_predict_log(prefix, country, y_pred, y_proba, target_date, runtime, model_version, test=test)

        df = pd.read_csv(log_file)
        logged_y_pred = [literal_eval(i) for i in df['y_pred'].copy()][-1]
        self.assertEqual(y_pred, logged_y_pred)
示例#18
0
def model_predict(country, year, month, day, model):
    """
    function to predict from model
    make a future dataframe for 30 days
    predict 30 days on the given model
    sum up predictions
    log output
    return the sum
    """

    ## start timer for runtime
    time_start = time.time()

    ## check date
    target_date = "{}-{}-{}".format(year,
                                    str(month).zfill(2),
                                    str(day).zfill(2))
    print(target_date)

    future = model.make_future_dataframe(periods=30)

    ## make prediction and gather data for log entry
    y_pred = model.predict(future.tail(30))
    y_pred_output = y_pred[['ds', 'yhat']]
    y_pred_sum = y_pred_output['yhat'].sum()
    print('predictions:')
    print(y_pred_output)
    print('30 day sum: ' + str(y_pred_sum))

    m, s = divmod(time.time() - time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d" % (h, m, s)

    ## update the log file
    update_predict_log(country, y_pred_sum, target_date, runtime,
                       MODEL_VERSION)

    return (y_pred_sum)
示例#19
0
def model_predict(query, model=None, test=False):
    """example function to predict from model"""

    # start timer for runtime
    time_start = time.time()

    # input checks
    if isinstance(query, list):
        query = np.array([query])

    # load model if needed
    if not model:
        model = model_load()

    # output checking
    if len(query.shape) == 1:
        query = query.reshape(1, -1)

    # make prediction and gather data for log entry
    y_pred = model.predict(query)
    y_proba = None
    if 'predict_proba' in dir(model) and model.probability == True:
        y_proba = model.predict_proba(query)

    m, s = divmod(time.time() - time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d" % (h, m, s)

    # update the log file
    for i in range(query.shape[0]):
        update_predict_log(y_pred[i],
                           y_proba[i],
                           runtime,
                           query.shape,
                           MODEL_VERSION,
                           test=test)

    return ({'y_pred': y_pred, 'y_proba': y_proba})
示例#20
0
    def test_03_predict(self):
        """
        ensure log file is created
        """

        log_file = os.path.join("logs", "predict-test.log")
        if os.path.exists(log_file):
            os.remove(log_file)
        
        ## YOUR CODE HERE
        ## Call the update_predict_log() function from logger.py with arbitrary input values and test if the log file 
        ## exists in you file system using the assertTrue() base method from unittest.
        
        y_pred = [0]
        y_proba = [0.9,0.1]
        runtime = "00:00:00"
        model_version = 2.0
        query = ['uk', 30, 'aavail_basic', 2]

        update_predict_log(y_pred,y_proba,query,runtime,
                           model_version, test=True)
        
        self.assertTrue(os.path.exists(log_file))
示例#21
0
    def test_04_predict(self):

        log_file = os.path.join("logs", "predict-test.log")

        ## update the log
        country = 'united_kingdom'
        y_pred = [0]
        y_proba = [0.6, 0.4]
        target_date = '2018-12-01'
        runtime = "00:00:02"
        model_version = 0.1

        update_predict_log(country,
                           y_pred,
                           y_proba,
                           target_date,
                           runtime,
                           model_version,
                           test=False)

        df = pd.read_csv(log_file)
        logged_y_pred = [literal_eval(i) for i in df['y_pred'].copy()][-1]
        self.assertEqual(y_pred, logged_y_pred)
示例#22
0
    def test_03_predict(self):

        log_file = os.path.join("logs", "predict-test.log")
        if os.path.exists(log_file):
            os.remove(log_file)

        ## update the log
        country = 'united_kingdom'
        y_pred = [0]
        y_proba = [0.6, 0.4]
        target_date = '2018-12-01'
        runtime = "00:00:02"
        model_version = 0.1

        update_predict_log(country,
                           y_pred,
                           y_proba,
                           target_date,
                           runtime,
                           model_version,
                           test=True)

        self.assertTrue(os.path.exists(log_file))
示例#23
0
    def test_03_predict(self):
        """
        ensure log file is created
        """

        log_file = os.path.join("logs", "predict-test.log")
        if os.path.exists(log_file):
            os.remove(log_file)

        ## update the log
        y_pred = [0]
        y_proba = [0.6, 0.4]
        runtime = "00:00:02"
        model_version = 0.1
        data_shape = (1, 10)

        update_predict_log(y_pred,
                           y_proba,
                           runtime,
                           data_shape,
                           model_version,
                           test=True)

        self.assertTrue(os.path.exists(log_file))
def model_predict(country, year, month, day, all_models=None, test=False):
    """
    example funtion to predict from model
    """

    ## start timer for runtime
    time_start = time.time()

    ## load model if needed
    if not all_models:
        all_data, all_models = model_load(training=False)

    ## input checks
    if country not in all_models.keys():
        raise Exception(
            "ERROR (model_predict) - model for country '{}' could not be found"
            .format(country))

    for d in [year, month, day]:
        if re.search("\D", d):
            raise Exception(
                "ERROR (model_predict) - invalid year, month or day")

    ## load data
    model = all_models[country]
    data = all_data[country]

    ## check date
    target_date = "{}-{}-{}".format(year,
                                    str(month).zfill(2),
                                    str(day).zfill(2))
    print(target_date)

    if target_date not in data['dates']:
        raise Exception(
            "ERROR (model_predict) - date {} not in range {}-{}".format(
                target_date, data['dates'][0], data['dates'][-1]))
    date_indx = np.where(data['dates'] == target_date)[0][0]
    query = data['X'].iloc[[date_indx]]

    ## sainty check
    if data['dates'].shape[0] != data['X'].shape[0]:
        raise Exception("ERROR (model_predict) - dimensions mismatch")

    ## make prediction and gather data for log entry
    y_pred = model.predict(query)
    y_proba = None
    if 'predict_proba' in dir(model) and 'probability' in dir(model):
        if model.probability == True:
            y_proba = model.predict_proba(query)

    m, s = divmod(time.time() - time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d" % (h, m, s)

    ## update predict log
    update_predict_log(country,
                       y_pred,
                       y_proba,
                       target_date,
                       runtime,
                       MODEL_VERSION,
                       test=test)

    return ({'y_pred': y_pred, 'y_proba': y_proba})
示例#25
0
def model_predict(country,
                  year,
                  month,
                  day,
                  all_models=None,
                  test=False,
                  from_pickle=False):
    """
    example funtion to predict from model
    """

    ## start timer for runtime
    time_start = time.time()

    # Load all data & models from a pickle file can speed things up a lot, great for the web app
    if from_pickle:
        version_ = re.sub("\.", "_", str(MODEL_VERSION))
        all_data, all_models = pickle.load(
            open(os.path.join("models", f"all_data_model-{version_}.pickle"),
                 "rb"))
    else:
        if not all_models:
            all_data, all_models = model_load(training=False)

    ## input checks
    if country not in all_models.keys():
        raise Exception(
            f"ERROR (model_predict) - model for country '{country}' could not be found"
        )

    for d in [year, month, day]:
        if re.search("\D", d):
            raise Exception(
                "ERROR (model_predict) - invalid year, month or day")

    ## load data
    model = all_models[country]
    data = all_data[country]

    ## check date
    target_date = f"{year}-{str(month).zfill(2)}-{str(day).zfill(2)}"
    print(target_date)

    if target_date not in data['dates']:
        raise Exception(
            f"ERROR (model_predict) - date {target_date} not in range {data['dates'][0]}-{data['dates'][-1]}"
        )
    date_indx = np.where(data['dates'] == target_date)[0][0]
    query = data['X'].iloc[[date_indx]]

    ## sainty check
    if data['dates'].shape[0] != data['X'].shape[0]:
        raise Exception("ERROR (model_predict) - dimensions mismatch")

    ## make prediction and gather data for log entry
    y_pred = model.predict(query)
    y_proba = None
    if 'predict_proba' in dir(model) and 'probability' in dir(model):
        if model.probability == True:
            y_proba = model.predict_proba(query)

    m, s = divmod(time.time() - time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d" % (h, m, s)

    ## update predict log
    update_predict_log(country,
                       y_pred,
                       y_proba,
                       target_date,
                       runtime,
                       MODEL_VERSION,
                       test=test)

    return ({'y_pred': y_pred, 'y_proba': y_proba})
示例#26
0
def model_predict():
    
   ## input checking
    if not request.json:
        print("ERROR: API (predict): did not receive request data")
        return jsonify([])
    
    if request.json['type'] == 'dict':
        pass
    else:
        print("ERROR API (predict): only dict data types have been implemented")
        return jsonify([])
    
    ## extract the query
    data = request.json['query']
        
    if request.json['type'] == 'dict':
        pass
    else:
        print("ERROR API (predict): only dict data types have been implemented")
        return jsonify([])

    
    num_periods = 30
    ## input checking

    #0302211000 old way of getting query data 
    #data = request.get_json(force=True)
    #get the number of months to forecast
     #select the country model
        
    try:#value = int(data['value'])
        country  = data['country']
        idx_start_date = data['date']
    except (KeyError,TypeError,ValueError):
        raise JsonError(description='Invalid value')
    idx_start_date = datetime.strptime(idx_start_date, '%d/%m/%Y')
    end_period = idx_start_date + timedelta(num_periods)
    
    #select model based on country 
    str_country  = country.lower()
    
    
    saved_model = str_country+"-"+"sales-arima-0_1.joblib"
    model = joblib.load(os.path.join(MODEL_DIR, saved_model))
    # We can compute predictions the same way we would on a normal ARIMA object:
    ## input checking
                          
    print("... predicting")
    
    
    ## start timer for runtime
    time_start = time.time()

    
    #preds, conf_int = pipe.predict(n_periods=periods, return_conf_int=True)
    preds, conf_int = model.predict(start=idx_start_date,end=end_period, return_conf_int=True)
    #index_of_fc = pd.date_range(ts.index[-1], periods = n_periods, freq='MS')
    index_of_fc = pd.date_range(idx_start_date, periods = len(preds), freq='D')
    # make series for plotting purpose
    fitted_series = pd.Series(preds, index=index_of_fc)
    df_series = fitted_series.to_frame()
    df_series.columns = ["proj_sales"]
    avgrevpred = df_series.proj_sales.mean().round(3)
    
    #print predicted values 
    
     ## make prediction and gather data for log entry
    y_proba = None
    if 'predict_proba' in dir(model) and model.probability == True:
        y_proba = model.predict_proba(n_periods=1)
    
    m, s = divmod(time.time()-time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d"%(h, m, s)
    ## update the log file
    #_update_predict_log(preds, y_proba,country, runtime)
    
    #update_predict_log("[0]", "[0.6,0.4]","['united_states', 24, 'aavail_basic', 8]","00:00:01", MODEL_VERSION, test=True)
    update_predict_log(preds, y_proba,data, runtime, MODEL_VERSION, test=False)
    
    #print results to outfile
    update_target(os.path.join(PRED_DIR,str_country+'-preds.csv'),df_series,overwrite=True)
    #_update_target(df_series)
    
    

    #return jsonify(preds,conf_int)
    #return jsonify(preds.tolist())

    #return jsonify(avgrevpred)
    return json_response(Predrevenue=avgrevpred)
示例#27
0
def model_predict(date, country, df=None, model=None, test=False):
    """
    example funtion to predict from model
    """

    ## start timer for runtime
    time_start = time.time()
    print("model_predicted started", time_start)
    ## input checks
    try:
        datetime.strptime(date, '%Y-%m-%d')
    except ValueError:
        raise Exception(
            "ERROR (model_predict) - invalid input date {} was given".format(
                date))

    if isinstance(country, str):
        pass
    else:
        raise Exception(
            "ERROR (model_predict) - invalid input country {} was given".
            format(country))

    if df is None:
        df = load_data()

    ## make prediction and gather data for log entry
    if (country != "all"):
        ts = df[df["country"] == country].sort_values(by="invoice_date")
    else:
        ts = df.sort_values(by="invoice_date")

    ts = ts.groupby("invoice_date")["price"].sum()

    nsteps = days_between(str(ts[:-2:-1].keys()[0].date()), date)

    model = ARIMA(ts, order=(8, 0, 8))
    results_ARIMA = model.fit(disp=-1)

    predicted = results_ARIMA.predict(start=len(ts),
                                      end=len(ts) + nsteps,
                                      exog=None,
                                      typ='linear',
                                      dynamic=False)
    rangeDates = np.array([
        ts[:-2:-1].keys()[0].date() + timedelta(x) for x in range(nsteps + 1)
    ],
                          dtype='datetime64[D]')
    predicted = pd.Series(predicted.values, rangeDates)
    y_proba = 'None'

    m, s = divmod(time.time() - time_start, 60)
    h, m = divmod(m, 60)
    runtime = "%03d:%02d:%02d" % (h, m, s)

    ## update the log file
    for i in range(len(predicted)):
        update_predict_log(predicted[i],
                           date,
                           country,
                           runtime,
                           MODEL_VERSION,
                           test=test)

    return ({'predicted': predicted})