labels = model.labels audio_conf = model.audio_conf if not args.finetune: # Don't want to restart training optim_state = package['optim_dict'] start_epoch = int(package.get('epoch', 1)) - 1 # Index start at 0 for training start_iter = package.get('iteration', None) if start_iter is None: start_epoch += 1 # We saved model after epoch finished, start at the next epoch. start_iter = 0 else: start_iter += 1 avg_loss = int(package.get('avg_loss', 0)) loss_results, cer_results, wer_results = package['loss_results'], package['cer_results'], \ package['wer_results'] if main_proc and args.visdom: # Add previous scores to visdom graph visdom_logger.load_previous_values(start_epoch, package) if main_proc and args.tensorboard: # Previous scores to tensorboard logs tensorboard_logger.load_previous_values(start_epoch, package) else: with open(args.labels_path) as label_file: labels = str(''.join(json.load(label_file))) audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size, window_stride=args.window_stride, window=args.window, noise_dir=args.noise_dir, noise_prob=args.noise_prob, noise_levels=(args.noise_min, args.noise_max)) rnn_type = args.rnn_type.lower()
if main_proc and args.tensorboard: tensorboard_logger = TensorBoardLogger(args.id + "-" + str(int(time.time())), args.log_dir, args.log_params) if args.load_auto_checkpoint: latest_checkpoint = checkpoint_handler.find_latest_checkpoint() if latest_checkpoint: args.continue_from = latest_checkpoint if args.continue_from: # Starting from previous model state = TrainingState.load_state(state_path=args.continue_from) model = state.model if args.finetune: state.init_finetune_states(args.epochs) if main_proc and args.visdom: # Add previous scores to visdom graph visdom_logger.load_previous_values(state.epoch, state.results) if main_proc and args.tensorboard: # Previous scores to tensorboard logs tensorboard_logger.load_previous_values(state.epoch, state.results) else: # Initialise new model training with open(args.labels_path) as label_file: labels = json.load(label_file) audio_conf = dict(sample_rate=args.sample_rate, window_size=args.window_size, window_stride=args.window_stride, window=args.window, noise_dir=args.noise_dir, noise_prob=args.noise_prob, noise_levels=(args.noise_min, args.noise_max), num_channels=args.num_channels)