def main(): working_folder = os.getenv('WORK_DIR', './') # configure logging setup_logging(working_folder, 'app-logging.yaml') logger = logging.getLogger(__name__) args = get_cmd_args() video_path = args.video_path logger.debug('the app started with the following parameters: %s', args) video_evaluator = VideoEvaluator() video_evaluator.evaluate(video_path) logger.debug('the app operation is completed')
def main(): working_folder = os.getenv('WORK_DIR', './') # configure logging setup_logging(working_folder, 'learning-logging.yaml') logger = logging.getLogger(__name__) args = get_cmd_args() no_epochs = int(args.no_epochs) no_steps_per_epoch = args.no_steps model_name = args.model executor_name = model_name logger.debug('learning operation started with the following parameters: %s', args) model = get_model(model_name) executor = get_executor(executor_name, model) executor.train_model(no_epochs, no_steps_per_epoch) logger.debug('learning operation is completed')
def main(): working_folder = os.getenv('WORK_DIR', './') # configure logging setup_logging(working_folder, 'scraping-logging.yaml') logger = logging.getLogger(__name__) args = get_cmd_args() base_url = args.base_url url = args.url storage_location = args.storage_location if base_url: logger.debug('Files will be scraped from: %s', base_url) if storage_location: logger.debug('Scraped files to be stored at: %s', storage_location) scraper = SignsLanguageScraper(base_url, storage_location) scraper.scrap(url)
import logger_config logger_config.setup_logging()
dataset_type = args.dataset_type dataset_path = args.dataset_path.split(',') if dataset_type == COMBINED else args.dataset_path output_dir_path = args.output_dir_path output_prefix = args.output_prefix output_max_size: float = float(args.output_max_size) shuffle_buffer_size = args.shuffle_buffer_size logger.debug('Source dataset path: %s', dataset_path) logger.debug('Source dataset type: %s', dataset_type) logger.debug('Output dir path: %s', output_dir_path) logger.debug('Output prefix: %s', output_prefix) logger.debug('Max size per output file: %s', output_max_size) logger.debug('Shuffle buffer size: %s', shuffle_buffer_size) # obtain an instance of a dataset creator dataset_creator = TFRecordDatasetCreator(dataset_type, dataset_path, shuffle_buffer_size) # serialize samples into the TFRecord format for better I/O dataset_creator.create(output_dir_path, output_prefix, output_max_size) logger.info('Dataset generation process completed') if __name__ == '__main__': working_folder = os.getenv('WORK_DIR', './') setup_logging(working_folder, 'dataset-logging.yaml') logger = logging.getLogger(__name__) logger.info('Dataset generation process started') main()
existing_files = [f for f in os.listdir(incoming_queue) if os.path.isfile(os.path.join(incoming_queue, f))] for file_name in existing_files: logger.debug('processing ''%s''', file_name) with open(os.path.join(incoming_queue, file_name)) as f: data = json.load(f) FileProcessingHandler().handle(data) observer = Observer() observer.schedule(IncomingQueueWatcher(), path=incoming_queue) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join() if __name__ == '__main__': # obtain working folder from WORK_DIR environment variable working_folder = os.getenv('WORK_DIR', './') # configure logging setup_logging(working_folder, 'pre-processing-logging.yaml') logger = logging.getLogger(__name__) # execute video pre_processing logic main()