示例#1
0
    def _bboxes_nms(self, bboxes, labels, cfg):
        if labels.numel() == 0:
            return bboxes, labels

        if 'nms_cfg' in cfg:
            warning.warn('nms_cfg in test_cfg will be deprecated. '
                         'Please rename it as nms')
        if 'nms' not in cfg:
            cfg.nms = cfg.nms_cfg

        out_bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:, -1], labels,
                                       cfg.nms)
        out_labels = labels[keep]

        if len(out_bboxes) > 0:
            # use `sort` to replace with `argsort` here
            _, idx = torch.sort(out_bboxes[:, -1], descending=True)
            max_per_img = out_bboxes.new_tensor(cfg.max_per_img).to(torch.long)
            nms_after = max_per_img
            if torch.onnx.is_in_onnx_export():
                # Always keep topk op for dynamic input in onnx
                from mmdet.core.export import get_k_for_topk
                nms_after = get_k_for_topk(max_per_img, out_bboxes.shape[0])
            idx = idx[:nms_after]
            out_bboxes = out_bboxes[idx]
            out_labels = out_labels[idx]

        return out_bboxes, out_labels
示例#2
0
    def __init__(self, session=None, de=None):

        if session is None:
            session = database.create_session()
        self.session = session

        if de is not None:
            warning.warn(
                "DatabaseExtension has been deprecated is no longer supported")

        self.experiments = querying.get_experiments(session=self.session,
                                                    all=True)
        self.keywords = sorted(querying.get_keywords(self.session),
                               key=str.casefold)
        self.variables = querying.get_variables(self.session, inferred=True)

        self._make_widgets()

        # Call super init and pass widgets as children
        super().__init__(children=[
            self.header, self.selectors, self.expt_info, self.expt_explorer
        ])

        # Show the experiment information: important for only one experiment, as
        # events will not trigger this otherwise
        self._show_experiment_information(self.expt_selector.value)
        self._set_handlers()
def export_2d_annotation(root_path, info_path, version):
    """Export 2d annotation from the info file and raw data.

    Args:
        root_path (str): Root path of the raw data.
        info_path (str): Path of the info file.
        version (str): Dataset version.
    """
    warning.warn('DeprecationWarning: 2D annotations are not used on the '
                 'Lyft dataset. The function export_2d_annotation will be '
                 'deprecated.')
    # get bbox annotations for camera
    camera_types = [
        'CAM_FRONT',
        'CAM_FRONT_RIGHT',
        'CAM_FRONT_LEFT',
        'CAM_BACK',
        'CAM_BACK_LEFT',
        'CAM_BACK_RIGHT',
    ]
    lyft_infos = mmcv.load(info_path)['infos']
    lyft = Lyft(data_path=osp.join(root_path, version),
                json_path=osp.join(root_path, version, version),
                verbose=True)
    # info_2d_list = []
    cat2Ids = [
        dict(id=lyft_categories.index(cat_name), name=cat_name)
        for cat_name in lyft_categories
    ]
    coco_ann_id = 0
    coco_2d_dict = dict(annotations=[], images=[], categories=cat2Ids)
    for info in mmcv.track_iter_progress(lyft_infos):
        for cam in camera_types:
            cam_info = info['cams'][cam]
            coco_infos = get_2d_boxes(lyft,
                                      cam_info['sample_data_token'],
                                      visibilities=['', '1', '2', '3', '4'])
            (height, width, _) = mmcv.imread(cam_info['data_path']).shape
            coco_2d_dict['images'].append(
                dict(file_name=cam_info['data_path'],
                     id=cam_info['sample_data_token'],
                     width=width,
                     height=height))
            for coco_info in coco_infos:
                if coco_info is None:
                    continue
                # add an empty key for coco format
                coco_info['segmentation'] = []
                coco_info['id'] = coco_ann_id
                coco_2d_dict['annotations'].append(coco_info)
                coco_ann_id += 1
    mmcv.dump(coco_2d_dict, f'{info_path[:-4]}.coco.json')
示例#4
0
    def _bboxes_nms(self, bboxes, labels, cfg):
        if 'nms_cfg' in cfg:
            warning.warn('nms_cfg in test_cfg will be deprecated. '
                         'Please rename it as nms')
        if 'nms' not in cfg:
            cfg.nms = cfg.nms_cfg

        if labels.numel() > 0:
            max_num = cfg.max_per_img
            bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:,
                                                             -1].contiguous(),
                                       labels, cfg.nms)
            if max_num > 0:
                bboxes = bboxes[:max_num]
                labels = labels[keep][:max_num]

        return bboxes, labels
示例#5
0
def mono_cam_box2vis(cam_box):
    """This is a post-processing function on the bboxes from Mono-3D task. If
    we want to perform projection visualization, we need to:

        1. rotate the box along x-axis for np.pi / 2 (roll)
        2. change orientation from local yaw to global yaw
        3. convert yaw by (np.pi / 2 - yaw)

    After applying this function, we can project and draw it on 2D images.

    Args:
        cam_box (:obj:`CameraInstance3DBoxes`): 3D bbox in camera coordinate \
            system before conversion. Could be gt bbox loaded from dataset or \
                network prediction output.

    Returns:
        :obj:`CameraInstance3DBoxes`: Box after conversion.
    """
    warning.warn('DeprecationWarning: The hack of yaw and dimension in the '
                 'monocular 3D detection on nuScenes has been removed. The '
                 'function mono_cam_box2vis will be deprecated.')
    from . import CameraInstance3DBoxes
    assert isinstance(cam_box, CameraInstance3DBoxes), \
        'input bbox should be CameraInstance3DBoxes!'

    loc = cam_box.gravity_center
    dim = cam_box.dims
    yaw = cam_box.yaw
    feats = cam_box.tensor[:, 7:]
    # rotate along x-axis for np.pi / 2
    # see also here: https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/nuscenes_mono_dataset.py#L557  # noqa
    dim[:, [1, 2]] = dim[:, [2, 1]]
    # change local yaw to global yaw for visualization
    # refer to https://github.com/open-mmlab/mmdetection3d/blob/master/mmdet3d/datasets/nuscenes_mono_dataset.py#L164-L166  # noqa
    yaw += torch.atan2(loc[:, 0], loc[:, 2])
    # convert yaw by (-yaw - np.pi / 2)
    # this is because mono 3D box class such as `NuScenesBox` has different
    # definition of rotation with our `CameraInstance3DBoxes`
    yaw = -yaw - np.pi / 2
    cam_box = torch.cat([loc, dim, yaw[:, None], feats], dim=1)
    cam_box = CameraInstance3DBoxes(cam_box,
                                    box_dim=cam_box.shape[-1],
                                    origin=(0.5, 0.5, 0.5))

    return cam_box
示例#6
0
    def _bboxes_nms(self, bboxes, labels, cfg):
        if labels.numel() == 0:
            return bboxes, labels

        if 'nms_cfg' in cfg:
            warning.warn('nms_cfg in test_cfg will be deprecated. '
                         'Please rename it as nms')
        if 'nms' not in cfg:
            cfg.nms = cfg.nms_cfg

        out_bboxes, keep = batched_nms(bboxes[:, :4], bboxes[:, -1], labels,
                                       cfg.nms)
        out_labels = labels[keep]

        if len(out_bboxes) > 0:
            idx = torch.argsort(out_bboxes[:, -1], descending=True)
            idx = idx[:cfg.max_per_img]
            out_bboxes = out_bboxes[idx]
            out_labels = out_labels[idx]

        return out_bboxes, out_labels