def aggregate_logging_outputs(self, logging_outputs, criterion): """[deprecated] Aggregate logging outputs from data parallel training.""" utils.deprecation_warning( "The aggregate_logging_outputs API is deprecated. " "Please use the reduce_metrics API instead.") with metrics.aggregate() as agg: self.reduce_metrics(logging_outputs, criterion) return agg.get_smoothed_values()
def _reduce_and_log_stats(self, logging_outputs, sample_size, grad_norm=None): if grad_norm is not None: metrics.log_speed("ups", 1., priority=100, round=2) metrics.log_scalar("gnorm", grad_norm, priority=400, round=3) if self.args.clip_norm > 0: metrics.log_scalar( "clip", torch.where( grad_norm > self.args.clip_norm, grad_norm.new_tensor(100), grad_norm.new_tensor(0), ), priority=500, round=1, ) with metrics.aggregate() as agg: if logging_outputs is not None: self.task.reduce_metrics(logging_outputs, self.get_criterion()) del logging_outputs # extra warning for criterions that don't properly log a loss value if "loss" not in agg: if "loss" not in self._warn_once: self._warn_once.add("loss") logger.warning( "Criterion.reduce_metrics did not log a 'loss' value, " "which may break some functionality") metrics.log_scalar("loss", -1) # support legacy interface logging_output = agg.get_smoothed_values() logging_output["sample_size"] = sample_size for key_to_delete in ["ppl", "wps", "wpb", "bsz"]: if key_to_delete in logging_output: del logging_output[key_to_delete] return logging_output
def validate(args, trainer, task, epoch_itr, subsets): """Evaluate the model on the validation set(s) and return the losses.""" if args.fixed_validation_seed is not None: # set fixed seed for every validation utils.set_torch_seed(args.fixed_validation_seed) valid_losses = [] for subset in subsets: logger.info('begin validation on "{}" subset'.format(subset)) # Initialize data iterator itr = trainer.get_valid_iterator(subset).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=args.log_format, log_interval=args.log_interval, epoch=epoch_itr.epoch, prefix=f"valid on '{subset}' subset", tensorboard_logdir=( args.tensorboard_logdir if distributed_utils.is_master(args) else None ), default_log_format=("tqdm" if not args.no_progress_bar else "simple"), ) # create a new root metrics aggregator so validation metrics # don't pollute other aggregators (e.g., train meters) with metrics.aggregate(new_root=True) as agg: for sample in progress: trainer.valid_step(sample) # log validation stats stats = get_valid_stats(args, trainer, agg.get_smoothed_values()) progress.print(stats, tag=subset, step=trainer.get_num_updates()) valid_losses.append(stats[args.best_checkpoint_metric]) return valid_losses
def main(args, override_args=None): utils.import_user_module(args) assert args.max_tokens is not None or args.max_sentences is not None, \ 'Must specify batch size either with --max-tokens or --max-sentences' use_fp16 = args.fp16 use_cuda = torch.cuda.is_available() and not args.cpu if use_cuda: torch.cuda.set_device(args.device_id) if override_args is not None: overrides = vars(override_args) overrides.update(eval(getattr(override_args, 'model_overrides', '{}'))) else: overrides = None # Load ensemble logger.info('loading model(s) from {}'.format(args.path)) models, model_args, task = checkpoint_utils.load_model_ensemble_and_task( [args.path], arg_overrides=overrides, suffix=getattr(args, "checkpoint_suffix", ""), ) model = models[0] # Move models to GPU for model in models: if use_fp16: model.half() if use_cuda: model.cuda() # Print args logger.info(model_args) # Build criterion criterion = task.build_criterion(model_args) criterion.eval() for subset in args.valid_subset.split(','): try: task.load_dataset(subset, combine=False, epoch=1) dataset = task.dataset(subset) except KeyError: raise Exception('Cannot find dataset: ' + subset) # Initialize data iterator itr = task.get_batch_iterator( dataset=dataset, max_tokens=args.max_tokens, max_sentences=args.max_sentences, max_positions=utils.resolve_max_positions( task.max_positions(), *[m.max_positions() for m in models], ), ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test, required_batch_size_multiple=args.required_batch_size_multiple, seed=args.seed, num_shards=args.distributed_world_size, shard_id=args.distributed_rank, num_workers=args.num_workers, ).next_epoch_itr(shuffle=False) progress = progress_bar.progress_bar( itr, log_format=args.log_format, log_interval=args.log_interval, prefix=f"valid on '{subset}' subset", default_log_format=('tqdm' if not args.no_progress_bar else 'simple'), ) log_outputs = [] for i, sample in enumerate(progress): sample = utils.move_to_cuda(sample) if use_cuda else sample _loss, _sample_size, log_output = task.valid_step(sample, model, criterion) progress.log(log_output, step=i) log_outputs.append(log_output) if args.distributed_world_size > 1: log_outputs = distributed_utils.all_gather_list( log_outputs, max_size=getattr(args, 'all_gather_list_size', 16384), ) log_outputs = list(chain.from_iterable(log_outputs)) with metrics.aggregate() as agg: task.reduce_metrics(log_outputs, criterion) log_output = agg.get_smoothed_values() progress.print(log_output, tag=subset, step=i)
def train(args, trainer, task, epoch_itr): """Train the model for one epoch and return validation losses.""" # Initialize data iterator itr = epoch_itr.next_epoch_itr( fix_batches_to_gpus=args.fix_batches_to_gpus, shuffle=(epoch_itr.next_epoch_idx > args.curriculum), ) update_freq = ( args.update_freq[epoch_itr.epoch - 1] if epoch_itr.epoch <= len(args.update_freq) else args.update_freq[-1] ) itr = iterators.GroupedIterator(itr, update_freq) progress = progress_bar.progress_bar( itr, log_format=args.log_format, log_interval=args.log_interval, epoch=epoch_itr.epoch, tensorboard_logdir=( args.tensorboard_logdir if distributed_utils.is_master(args) else None ), default_log_format=("tqdm" if not args.no_progress_bar else "simple"), ) trainer.begin_epoch(epoch_itr.epoch) valid_subsets = args.valid_subset.split(",") should_stop = False num_updates = trainer.get_num_updates() for i, samples in enumerate(progress): with metrics.aggregate("train_inner"), torch.autograd.profiler.record_function( "train_step-%d" % i ): log_output = trainer.train_step(samples) if log_output is not None: # not OOM, overflow, ... # log mid-epoch stats num_updates = trainer.get_num_updates() if num_updates % args.log_interval == 0: stats = get_training_stats(metrics.get_smoothed_values("train_inner")) progress.log(stats, tag="train_inner", step=num_updates) # reset mid-epoch stats after each log interval # the end-of-epoch stats will still be preserved metrics.reset_meters("train_inner") end_of_epoch = not itr.has_next() valid_losses, should_stop = validate_and_save( args, trainer, task, epoch_itr, valid_subsets, end_of_epoch ) if should_stop: break # log end-of-epoch stats logger.info("end of epoch {} (average epoch stats below)".format(epoch_itr.epoch)) stats = get_training_stats(metrics.get_smoothed_values("train")) progress.print(stats, tag="train", step=num_updates) # reset epoch-level meters metrics.reset_meters("train") return valid_losses, should_stop