示例#1
0
    def _eval_is_even(self):
        is_integer = self.is_integer

        if is_integer:
            return fuzzy_not(self._eval_is_odd())

        elif is_integer == False:
            return False
示例#2
0
文件: mul.py 项目: pernici/sympy
    def _eval_is_even(self):
        is_integer = self.is_integer

        if is_integer:
            return fuzzy_not(self._eval_is_odd())

        elif is_integer == False:
            return False
示例#3
0
    def _eval_is_real(self):
        im_count = 0
        re_not = False

        for t in self.args:
            if t.is_imaginary:
                im_count += 1
                continue

            t_real = t.is_real
            if t_real:
                continue

            elif fuzzy_not(t_real):
                re_not = True

            else:
                return None

        if re_not:
            return False

        return im_count % 2 == 0
示例#4
0
    def _eval_is_real(self):
        im_count = 0
        re_not = False

        for t in self.args:
            if t.is_imaginary:
                im_count += 1
                continue

            t_real = t.is_real
            if t_real:
                continue

            elif fuzzy_not(t_real):
                re_not = True

            else:
                return None

        if re_not:
            return False

        return (im_count % 2 == 0)
示例#5
0
文件: facts.py 项目: Aang/sympy
    def deduce_all_facts(self, facts, base=None):
        """Deduce all facts from known facts ({} or [] of (k,v))

           *********************************************
           * This is the workhorse, so keep it *fast*. *
           *********************************************

           base  --  previously known facts (must be: fully deduced set)
                     attention: base is modified *in place*  /optional/

           providing `base` could be needed for performance reasons -- we don't
           want to spend most of the time just re-deducing base from base
           (e.g. #base=50, #facts=2)
        """
        # keep frequently used attributes locally, so we'll avoid extra
        # attribute access overhead
        rels = self.rels
        beta_rules = self.beta_rules

        if base is not None:
            new_facts = base
        else:
            new_facts = {}

        # XXX better name ?
        def x_new_facts(keys, v):
            for k in keys:
                if k in new_facts and new_facts[k] is not None:
                    assert new_facts[k] == v, \
                            ('inconsistency between facts', new_facts, k, v)
                    continue
                else:
                    new_facts[k] = v

        if type(facts) is dict:
            fseq = facts.iteritems()
        else:
            fseq = facts


        while True:
            beta_maytrigger = set()

            # --- alpha chains ---
            #print '**'
            for k,v in fseq:
                #print '--'

                # first, convert name to be not a not-name
                if k[:1] == '!':
                    k = name_not(k)
                    v = fuzzy_not(v)

                #new_fact(k, v)
                if k in new_facts:
                    assert new_facts[k] is None or new_facts[k] == v, \
                            ('inconsistency between facts', new_facts, k, v)
                    # performance-wise it is important not to fire implied rules
                    # for already-seen fact -- we already did them all.
                    continue
                else:
                    new_facts[k] = v

                # some known fact -- let's follow its implications
                if v is not None:
                    # lookup routing tables
                    try:
                        tt, tf, tbeta,  ft, ff, fbeta = rels[k]
                    except KeyError:
                        pass
                    else:
                        # Now we have routing tables with *all* the needed
                        # implications for this k. This means we do not have to
                        # process each implications recursively!
                        # XXX this ^^^ is true only for alpha chains

                        # k=T
                        if v:
                            x_new_facts(tt, True)   # k -> i
                            x_new_facts(tf, False)  # k -> !i

                            beta_maytrigger.update(tbeta)

                        # k=F
                        else:
                            x_new_facts(ft, True)   # !k -> i
                            x_new_facts(ff, False)  # !k -> !i

                            beta_maytrigger.update(fbeta)


            # --- beta chains ---

            # if no beta-rules may trigger -- it's an end-of-story
            if not beta_maytrigger:
                break
            #print '(β) MayTrigger: %s' % beta_maytrigger

            fseq = []

            # XXX this is dumb proof-of-concept trigger -- we'll need to optimize it
            # let's see which beta-rules to trigger
            for bidx in beta_maytrigger:
                bcond,bimpl = beta_rules[bidx]

                # let's see whether bcond is satisfied
                for bk in bcond.args:
                    try:
                        if bk[:1] == '!':
                            bv = fuzzy_not(new_facts[bk[1:]])
                        else:
                            bv = new_facts[bk]
                    except KeyError:
                        break   # fact not found -- bcond not satisfied

                    # one of bcond's condition does not hold
                    if not bv:
                        break

                else:
                    # all of bcond's condition hold -- let's fire this beta rule
                    #print '(β) Trigger #%i  (%s)' % (bidx, bimpl)

                    if bimpl[:1] == '!':
                        bimpl = bimpl[1:]
                        v = False
                    else:
                        v = True
                    fseq.append( (bimpl,v) )
        return new_facts
示例#6
0
    def deduce_all_facts(self, facts, base=None):
        """Deduce all facts from known facts ({} or [] of (k,v))

           *********************************************
           * This is the workhorse, so keep it *fast*. *
           *********************************************

           base  --  previously known facts (must be: fully deduced set)
                     attention: base is modified *in place*  /optional/

           providing `base` could be needed for performance reasons -- we don't
           want to spend most of the time just re-deducing base from base
           (e.g. #base=50, #facts=2)
        """
        # keep frequently used attributes locally, so we'll avoid extra
        # attribute access overhead
        rels = self.rels
        beta_rules = self.beta_rules
        if base is None:
            new_facts = {}
        else:
            new_facts = base

        def x_new_facts(keys, v):
            for k in keys:
                if k in new_facts and new_facts[k] is not None:
                    assert new_facts[k] == v, \
                            ('inconsistency between facts', new_facts, k, v)
                    continue
                else:
                    new_facts[k] = v

        if type(facts) is dict:
            fseq = facts.iteritems()
        else:
            fseq = facts

        while True:
            beta_maytrigger = set()

            # --- alpha chains ---
            for k, v in fseq:
                # first, convert name to be not a not-name
                if k[:1] == '!':
                    k = name_not(k)
                    v = fuzzy_not(v)

                #new_fact(k, v)
                if k in new_facts:
                    assert new_facts[k] is None or new_facts[k] == v, \
                            ('inconsistency between facts', new_facts, k, v)
                    # performance-wise it is important not to fire implied rules
                    # for already-seen fact -- we already did them all.
                    continue
                else:
                    new_facts[k] = v

                # some known fact -- let's follow its implications
                if v is not None:
                    # lookup routing tables
                    try:
                        tt, tf, tbeta, ft, ff, fbeta = rels[k]
                    except KeyError:
                        pass
                    else:
                        # Now we have routing tables with *all* the needed
                        # implications for this k. This means we do not have to
                        # process each implications recursively!
                        # XXX this ^^^ is true only for alpha chains

                        # k=T
                        if v:
                            x_new_facts(tt, True)  # k -> i
                            x_new_facts(tf, False)  # k -> !i

                            beta_maytrigger.update(tbeta)

                        # k=F
                        else:
                            x_new_facts(ft, True)  # !k -> i
                            x_new_facts(ff, False)  # !k -> !i

                            beta_maytrigger.update(fbeta)

            # --- beta chains ---

            # if no beta-rules may trigger -- it's an end-of-story
            if not beta_maytrigger:
                break
            fseq = []
            # let's see which beta-rules to trigger
            for bidx in beta_maytrigger:
                bcond, bimpl = beta_rules[bidx]
                # let's see whether bcond is satisfied
                for bk in bcond.args:
                    try:
                        if bk[:1] == '!':
                            bv = fuzzy_not(new_facts[bk[1:]])
                        else:
                            bv = new_facts[bk]
                    except KeyError:
                        break  # fact not found -- bcond not satisfied
                    # one of bcond's condition does not hold
                    if not bv:
                        break
                else:
                    # all of bcond's condition hold -- let's fire this beta rule
                    if bimpl[:1] == '!':
                        bimpl = bimpl[1:]
                        v = False
                    else:
                        v = True
                    fseq.append((bimpl, v))
        return new_facts