示例#1
0
def ppo(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=None,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10,
        TensorBoard=True,
        save_nn=True,
        save_every=1000,
        load_latest=False,
        load_custom=False,
        LoadPath=None,
        RTA_type=None):
    """
	Proximal Policy Optimization (by clipping),

	with early stopping based on approximate KL

	Args:
		env_fn : A function which creates a copy of the environment.
			The environment must satisfy the OpenAI Gym API.

		actor_critic: The constructor method for a PyTorch Module with a
			``step`` method, an ``act`` method, a ``pi`` module, and a ``v``
			module. The ``step`` method should accept a batch of observations
			and return:

			===========  ================  ======================================
			Symbol       Shape             Description
			===========  ================  ======================================
			``a``        (batch, act_dim)  | Numpy array of actions for each
										   | observation.
			``v``        (batch,)          | Numpy array of value estimates
										   | for the provided observations.
			``logp_a``   (batch,)          | Numpy array of log probs for the
										   | actions in ``a``.
			===========  ================  ======================================

			The ``act`` method behaves the same as ``step`` but only returns ``a``.

			The ``pi`` module's forward call should accept a batch of
			observations and optionally a batch of actions, and return:

			===========  ================  ======================================
			Symbol       Shape             Description
			===========  ================  ======================================
			``pi``       N/A               | Torch Distribution object, containing
										   | a batch of distributions describing
										   | the policy for the provided observations.
			``logp_a``   (batch,)          | Optional (only returned if batch of
										   | actions is given). Tensor containing
										   | the log probability, according to
										   | the policy, of the provided actions.
										   | If actions not given, will contain
										   | ``None``.
			===========  ================  ======================================

			The ``v`` module's forward call should accept a batch of observations
			and return:

			===========  ================  ======================================
			Symbol       Shape             Description
			===========  ================  ======================================
			``v``        (batch,)          | Tensor containing the value estimates
										   | for the provided observations. (Critical:
										   | make sure to flatten this!)
			===========  ================  ======================================


		ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
			you provided to PPO.

		seed (int): Seed for random number generators.

		steps_per_epoch (int): Number of steps of interaction (state-action pairs)
			for the agent and the environment in each epoch.

		epochs (int): Number of epochs of interaction (equivalent to
			number of policy updates) to perform.

		gamma (float): Discount factor. (Always between 0 and 1.)

		clip_ratio (float): Hyperparameter for clipping in the policy objective.
			Roughly: how far can the new policy go from the old policy while
			still profiting (improving the objective function)? The new policy
			can still go farther than the clip_ratio says, but it doesn't help
			on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
			denoted by :math:`\epsilon`.

		pi_lr (float): Learning rate for policy optimizer.

		vf_lr (float): Learning rate for value function optimizer.

		train_pi_iters (int): Maximum number of gradient descent steps to take
			on policy loss per epoch. (Early stopping may cause optimizer
			to take fewer than this.)

		train_v_iters (int): Number of gradient descent steps to take on
			value function per epoch.

		lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
			close to 1.)

		max_ep_len (int): Maximum length of trajectory / episode / rollout.

		target_kl (float): Roughly what KL divergence we think is appropriate
			between new and old policies after an update. This will get used
			for early stopping. (Usually small, 0.01 or 0.05.)

		logger_kwargs (dict): Keyword args for EpochLogger.

		save_freq (int): How often (in terms of gap between epochs) to save
			the current policy and value function.

		TensorBoard (bool): True plots to TensorBoard, False does not

		save_nn (bool): True saves neural network data, False does not

		save_every (int): How often to save neural network

		load_latest (bool): Load last saved neural network data before training

		load_custom (bool): Load custom neural network data file before training

		LoadPath (str): Path for custom neural network data file

		RTA_type (str): RTA framework, either 'CBF', 'SVL', 'ASIF', or
			'SBSF'

	"""

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Instantiate environment
    env = env_fn()
    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape

    # Random seed for each cpu
    seed += 1 * proc_id()
    env.seed(seed)

    # Create actor-critic module
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)

    # Load model if True
    if load_latest:
        models = glob.glob(f"{PATH}/models/PPO/*")
        LoadPath = max(models, key=os.path.getctime)
        ac.load_state_dict(torch.load(LoadPath))
    elif load_custom:
        ac.load_state_dict(torch.load(LoadPath))

    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing PPO policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data[
            'logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        ratio = torch.exp(logp - logp_old)
        clip_adv = torch.clamp(ratio, 1 - clip_ratio, 1 + clip_ratio) * adv
        loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
        clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
        pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        data = buf.get()

        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with multiple steps of gradient descent
        for i in range(train_pi_iters):
            pi_optimizer.zero_grad()
            loss_pi, pi_info = compute_loss_pi(data)
            kl = mpi_avg(pi_info['kl'])
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
            loss_pi.backward()
            mpi_avg_grads(ac.pi)  # average grads across MPI processes
            pi_optimizer.step()

        logger.store(StopIter=i)

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            mpi_avg_grads(ac.v)  # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # Import RTA
    if RTA_type == 'CBF':
        from CBF_for_speed_limit import RTA
    elif RTA_type == 'SVL':
        from Simple_velocity_limit import RTA
    elif RTA_type == 'ASIF':
        from IASIF import RTA
    elif RTA_type == 'SBSF':
        from ISimplex import RTA

    # Call RTA, define action conversion
    if RTA_type != 'off':
        env.RTA_reward = RTA_type

        rta = RTA(env)

        def RTA_act(obs, act):
            act = np.clip(act, -env.force_magnitude, env.force_magnitude)
            x0 = [obs[0], obs[1], 0, obs[2], obs[3], 0]
            u_des = np.array([[act[0]], [act[1]], [0]])
            u = rta.main(x0, u_des)
            new_act = [u[0, 0], u[1, 0]]
            if np.sqrt((act[0] - new_act[0])**2 +
                       (act[1] - new_act[1])**2) < 0.0001:
                env.RTA_on = False
            else:
                env.RTA_on = True
            return new_act

    # Prepare for interaction with environment
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0
    total_episodes = 0
    RTA_percent = 0

    # Create TensorBoard file if True
    if TensorBoard and proc_id() == 0:
        if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
            Name = f"{PATH}/runs/Spacecraft-docking-" + current_time
        elif env_name == 'dubins-aircraft-v0' or env_name == 'dubins-aircraft-continuous-v0':
            Name = f"{PATH}/runs/Dubins-aircraft-" + current_time
        writer = SummaryWriter(Name)

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        batch_ret = []  # Track episode returns
        batch_len = []  # Track episode lengths
        batch_RTA_percent = []  # Track precentage of time RTA is on
        env.success = 0  # Track episode success rate
        env.failure = 0  # Track episode failure rate
        env.crash = 0  # Track episode crash rate
        env.overtime = 0  # Track episode over max time/control rate
        episodes = 0  # Track episodes
        delta_v = []  # Track episode total delta v
        for t in range(local_steps_per_epoch):
            a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))
            if RTA_type != 'off':  # If RTA is on, get RTA action
                RTA_a = RTA_act(o, a)
                if env.RTA_on:
                    RTA_percent += 1
                next_o, r, d, _ = env.step(RTA_a)
            else:  # If RTA is off, pass through desired action
                next_o, r, d, _ = env.step(a)
                if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                    over_max_vel, _, _ = env.check_velocity(a[0], a[1])
                    if over_max_vel:
                        RTA_percent += 1
            ep_ret += r
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t == local_steps_per_epoch - 1

            if terminal or epoch_ended:
                if epoch_ended and not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len,
                          flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                    batch_ret.append(ep_ret)
                    batch_len.append(ep_len)
                    episodes += 1
                    if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                        delta_v.append(env.control_input / env.mass_deputy)
                batch_RTA_percent.append(RTA_percent / ep_len * 100)
                RTA_percent = 0
                o, ep_ret, ep_len = env.reset(), 0, 0

        total_episodes += episodes
        # Track success, failure, crash, overtime rates
        if episodes != 0:
            success_rate = env.success / episodes
            failure_rate = env.failure / episodes
            crash_rate = env.crash / episodes
            overtime_rate = env.overtime / episodes
        else:
            success_rate = 0
            failure_rate = 0
            crash_rate = 0
            overtime_rate = 0
            raise (
                "No completed episodes logging will break [increase steps per epoch]"
            )

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()

        # Average data over all cpus
        avg_batch_ret = mpi_avg(np.mean(batch_ret))
        avg_batch_len = mpi_avg(np.mean(batch_len))
        avg_success_rate = mpi_avg(success_rate)
        avg_failure_rate = mpi_avg(failure_rate)
        avg_crash_rate = mpi_avg(crash_rate)
        avg_overtime_rate = mpi_avg(overtime_rate)
        if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
            avg_delta_v = mpi_avg(np.mean(delta_v))
            avg_RTA_percent = mpi_avg(np.mean(batch_RTA_percent))

        if proc_id() == 0:  # Only on one cpu
            # Plot to TensorBoard if True, only on one cpu
            if TensorBoard:
                writer.add_scalar('Return', avg_batch_ret, epoch)
                writer.add_scalar('Episode-Length', avg_batch_len * env.tau,
                                  epoch)
                writer.add_scalar('Success-Rate', avg_success_rate * 100,
                                  epoch)
                writer.add_scalar('Failure-Rate', avg_failure_rate * 100,
                                  epoch)
                writer.add_scalar('Crash-Rate', avg_crash_rate * 100, epoch)
                writer.add_scalar('Overtime-Rate', avg_overtime_rate * 100,
                                  epoch)
                if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                    writer.add_scalar('Delta-V', avg_delta_v, epoch)
                    writer.add_scalar('RTA-on-percent', avg_RTA_percent, epoch)

            # Save neural network if true, can change to desired location
            if save_nn and epoch % save_every == 0 and epoch != 0:
                if not os.path.isdir(f"{PATH}/models"):
                    os.mkdir(f"{PATH}/models")
                if not os.path.isdir(f"{PATH}/models/PPO"):
                    os.mkdir(f"{PATH}/models/PPO")
                if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                    Name2 = f"{PATH}/models/PPO/Spacecraft-docking-" + current_time + f"-epoch{epoch}.dat"
                elif env_name == 'dubins-aircraft-v0' or env_name == 'dubins-aircraft-continuous-v0':
                    Name2 = f"{PATH}/models/PPO/Dubins-aircraft-" + current_time + f"-epoch{epoch}.dat"
                torch.save(ac.state_dict(), Name2)

    # Average episodes per hour, episode per epoch
    ep_hr = mpi_avg(total_episodes) * args.cpu / (time.time() -
                                                  start_time) * 3600
    ep_Ep = mpi_avg(total_episodes) * args.cpu / (epoch + 1)

    # Plot on one cpu
    if proc_id() == 0:
        # Save neural network
        if save_nn:
            if not os.path.isdir(f"{PATH}/models"):
                os.mkdir(f"{PATH}/models")
            if not os.path.isdir(f"{PATH}/models/PPO"):
                os.mkdir(f"{PATH}/models/PPO")
            if env_name == 'spacecraft-docking-continuous-v0' or env_name == 'spacecraft-docking-v0':
                Name2 = f"{PATH}/models/PPO/Spacecraft-docking-" + current_time + "-final.dat"
            elif env_name == 'dubins-aircraft-v0' or env_name == 'dubins-aircraft-continuous-v0':
                Name2 = f"{PATH}/models/PPO/Dubins-aircraft-" + current_time + "-final.dat"
            torch.save(ac.state_dict(), Name2)

        # Print statistics on episodes
        print(
            f"Episodes per hour: {ep_hr:.0f}, Episodes per epoch: {ep_Ep:.0f}, Epochs per hour: {(epoch+1)/(time.time()-start_time)*3600:.0f}"
        )
示例#2
0
class td3_agent:
    def __init__(self, args, env, env_params):
        self.args = args

        # path to save the model
        self.exp_name = '_'.join(
            (self.args.env_name, self.args.alg, str(self.args.seed),
             datetime.now().isoformat()))
        self.data_path = os.path.join(
            self.args.save_dir, '_'.join((self.args.env_name, self.args.alg)),
            self.exp_name)
        self.logger = EpochLogger(output_dir=self.data_path,
                                  exp_name=self.exp_name)
        self.logger.save_config(args)

        self.env = env
        self.env_params = env_params
        # create the network
        self.actor_network = actor(env_params)
        self.critic_network1 = critic(env_params)
        self.critic_network2 = critic(env_params)
        # sync the networks across the cpus
        sync_networks(self.actor_network)
        sync_networks(self.critic_network1)
        sync_networks(self.critic_network2)
        # build up the target network
        self.actor_target_network = actor(env_params)
        self.critic_target_network1 = critic(env_params)
        self.critic_target_network2 = critic(env_params)
        # load the weights into the target networks
        self.actor_target_network.load_state_dict(
            self.actor_network.state_dict())
        self.critic_target_network1.load_state_dict(
            self.critic_network1.state_dict())
        self.critic_target_network2.load_state_dict(
            self.critic_network2.state_dict())

        # if use gpu
        self.rank = MPI.COMM_WORLD.Get_rank()
        if args.cuda:
            device = 'cuda:{}'.format(self.rank % torch.cuda.device_count())
        else:
            device = 'cpu'
        self.device = torch.device(device)

        if self.args.cuda:
            self.actor_network.cuda(self.device)
            self.critic_network1.cuda(self.device)
            self.critic_network2.cuda(self.device)
            self.actor_target_network.cuda(self.device)
            self.critic_target_network1.cuda(self.device)
            self.critic_target_network2.cuda(self.device)
        # create the optimizer
        self.actor_optim = torch.optim.Adam(self.actor_network.parameters(),
                                            lr=self.args.lr_actor)
        self.critic_optim1 = torch.optim.Adam(
            self.critic_network1.parameters(), lr=self.args.lr_critic)
        self.critic_optim2 = torch.optim.Adam(
            self.critic_network2.parameters(), lr=self.args.lr_critic)
        # her sampler
        self.her_module = her_sampler(self.args.replay_strategy,
                                      self.args.replay_k,
                                      self.env.compute_reward)
        # create the replay buffer
        self.buffer = replay_buffer(self.env_params, self.args.buffer_size,
                                    self.her_module.sample_her_transitions)
        # create the normalizer
        self.o_norm = normalizer(size=env_params['obs'],
                                 default_clip_range=self.args.clip_range)
        self.g_norm = normalizer(size=env_params['goal'],
                                 default_clip_range=self.args.clip_range)

        self.logger.setup_pytorch_saver(self.actor_network)

    def learn(self):
        """
        train the network

        """
        # start to collect samples
        for epoch in range(self.args.n_epochs):
            for _ in range(self.args.n_cycles):
                mb_obs, mb_ag, mb_g, mb_actions = [], [], [], []
                for _ in range(self.args.num_rollouts_per_mpi):
                    # reset the rollouts
                    ep_obs, ep_ag, ep_g, ep_actions = [], [], [], []
                    # reset the environment
                    observation = self.env.reset()
                    obs = observation['observation']
                    ag = observation['achieved_goal']
                    g = observation['desired_goal']
                    # start to collect samples
                    for t in range(self.env_params['max_timesteps']):
                        with torch.no_grad():
                            input_tensor = self._preproc_inputs(obs, g)
                            pi = self.actor_network(input_tensor)
                            action = self._select_actions(pi)
                        # feed the actions into the environment
                        observation_new, _, _, info = self.env.step(action)
                        obs_new = observation_new['observation']
                        ag_new = observation_new['achieved_goal']
                        # append rollouts
                        ep_obs.append(obs.copy())
                        ep_ag.append(ag.copy())
                        ep_g.append(g.copy())
                        ep_actions.append(action.copy())
                        # re-assign the observation
                        obs = obs_new
                        ag = ag_new
                    ep_obs.append(obs.copy())
                    ep_ag.append(ag.copy())
                    mb_obs.append(ep_obs)
                    mb_ag.append(ep_ag)
                    mb_g.append(ep_g)
                    mb_actions.append(ep_actions)
                # convert them into arrays
                mb_obs = np.array(mb_obs)
                mb_ag = np.array(mb_ag)
                mb_g = np.array(mb_g)
                mb_actions = np.array(mb_actions)
                # store the episodes
                self.buffer.store_episode([mb_obs, mb_ag, mb_g, mb_actions])
                self._update_normalizer([mb_obs, mb_ag, mb_g, mb_actions])
                for _ in range(self.args.n_batches):
                    # train the network
                    self._update_network()
                # soft update
                self._soft_update_target_network(self.actor_target_network,
                                                 self.actor_network)
                self._soft_update_target_network(self.critic_target_network1,
                                                 self.critic_network1)
                self._soft_update_target_network(self.critic_target_network2,
                                                 self.critic_network2)
            # start to do the evaluation
            success_rate = self._eval_agent()

            # save some necessary objects
            # self.logger.save_state will also save pytorch's model implicitly.
            # self.logger.save_state({'env':self.env, 'o_norm':self.o_norm, 'g_norm':self.g_norm}, None)
            state = {
                'env': self.env,
                'o_norm': self.o_norm.get(),
                'g_norm': self.g_norm.get()
            }
            self.logger.save_state(state, None)

            t = ((epoch + 1) * self.args.n_cycles *
                 self.args.num_rollouts_per_mpi * MPI.COMM_WORLD.Get_size() *
                 self.env_params['max_timesteps'])

            self.logger.log_tabular('Epoch', epoch + 1)
            self.logger.log_tabular('SuccessRate', success_rate)
            self.logger.log_tabular('LossPi')
            self.logger.log_tabular('LossQ')
            self.logger.log_tabular('TotalEnvInteracts', t)
            self.logger.dump_tabular()

    # pre_process the inputs
    def _preproc_inputs(self, obs, g):
        obs_norm = self.o_norm.normalize(obs)
        g_norm = self.g_norm.normalize(g)
        # concatenate the stuffs
        inputs = np.concatenate([obs_norm, g_norm])
        inputs = torch.tensor(inputs, dtype=torch.float32).unsqueeze(0)
        if self.args.cuda:
            inputs = inputs.cuda(self.device)
        return inputs

    # this function will choose action for the agent and do the exploration
    def _select_actions(self, pi):
        action = pi.cpu().numpy().squeeze()
        # add the gaussian
        action += self.args.noise_eps * self.env_params[
            'action_max'] * np.random.randn(*action.shape)
        action = np.clip(action, -self.env_params['action_max'],
                         self.env_params['action_max'])
        # random actions...
        random_actions = np.random.uniform(low=-self.env_params['action_max'], high=self.env_params['action_max'], \
                                            size=self.env_params['action'])
        # choose if use the random actions
        action += np.random.binomial(1, self.args.random_eps,
                                     1)[0] * (random_actions - action)
        return action

    # update the normalizer
    def _update_normalizer(self, episode_batch):
        mb_obs, mb_ag, mb_g, mb_actions = episode_batch
        mb_obs_next = mb_obs[:, 1:, :]
        mb_ag_next = mb_ag[:, 1:, :]
        # get the number of normalization transitions
        num_transitions = mb_actions.shape[1]
        # create the new buffer to store them
        buffer_temp = {
            'obs': mb_obs,
            'ag': mb_ag,
            'g': mb_g,
            'actions': mb_actions,
            'obs_next': mb_obs_next,
            'ag_next': mb_ag_next,
        }
        transitions = self.her_module.sample_her_transitions(
            buffer_temp, num_transitions)
        obs, g = transitions['obs'], transitions['g']
        # pre process the obs and g
        transitions['obs'], transitions['g'] = self._preproc_og(obs, g)
        # update
        self.o_norm.update(transitions['obs'])
        self.g_norm.update(transitions['g'])
        # recompute the stats
        self.o_norm.recompute_stats()
        self.g_norm.recompute_stats()

    def _preproc_og(self, o, g):
        o = np.clip(o, -self.args.clip_obs, self.args.clip_obs)
        g = np.clip(g, -self.args.clip_obs, self.args.clip_obs)
        return o, g

    # soft update
    def _soft_update_target_network(self, target, source):
        for target_param, param in zip(target.parameters(),
                                       source.parameters()):
            target_param.data.copy_((1 - self.args.polyak) * param.data +
                                    self.args.polyak * target_param.data)

    # update the network
    def _update_network(self):
        # sample the episodes
        transitions = self.buffer.sample(self.args.batch_size)
        # pre-process the observation and goal
        o, o_next, g = transitions['obs'], transitions[
            'obs_next'], transitions['g']
        transitions['obs'], transitions['g'] = self._preproc_og(o, g)
        transitions['obs_next'], transitions['g_next'] = self._preproc_og(
            o_next, g)
        # start to do the update
        obs_norm = self.o_norm.normalize(transitions['obs'])
        g_norm = self.g_norm.normalize(transitions['g'])
        inputs_norm = np.concatenate([obs_norm, g_norm], axis=1)
        obs_next_norm = self.o_norm.normalize(transitions['obs_next'])
        g_next_norm = self.g_norm.normalize(transitions['g_next'])
        inputs_next_norm = np.concatenate([obs_next_norm, g_next_norm], axis=1)
        # transfer them into the tensor
        inputs_norm_tensor = torch.tensor(inputs_norm, dtype=torch.float32)
        inputs_next_norm_tensor = torch.tensor(inputs_next_norm,
                                               dtype=torch.float32)
        actions_tensor = torch.tensor(transitions['actions'],
                                      dtype=torch.float32)
        r_tensor = torch.tensor(transitions['r'], dtype=torch.float32)
        if self.args.cuda:
            inputs_norm_tensor = inputs_norm_tensor.cuda(self.device)
            inputs_next_norm_tensor = inputs_next_norm_tensor.cuda(self.device)
            actions_tensor = actions_tensor.cuda(self.device)
            r_tensor = r_tensor.cuda(self.device)
        # calculate the target Q value function
        with torch.no_grad():
            # do the normalization
            # concatenate the stuffs
            actions_next = self.actor_target_network(inputs_next_norm_tensor)
            actions_next += self.args.noise_eps * self.env_params[
                'action_max'] * torch.randn(actions_next.shape).cuda(
                    self.device)
            actions_next = torch.clamp(actions_next,
                                       -self.env_params['action_max'],
                                       self.env_params['action_max'])
            q_next_value1 = self.critic_target_network1(
                inputs_next_norm_tensor, actions_next)
            q_next_value2 = self.critic_target_network2(
                inputs_next_norm_tensor, actions_next)
            target_q_value = r_tensor + self.args.gamma * torch.min(
                q_next_value1, q_next_value2)
            # clip the q value
            clip_return = 1 / (1 - self.args.gamma)
            target_q_value = torch.clamp(target_q_value, -clip_return, 0)
            target_q_value = target_q_value.detach()
        # the q loss
        real_q_value1 = self.critic_network1(inputs_norm_tensor,
                                             actions_tensor)
        critic_loss1 = (target_q_value - real_q_value1).pow(2).mean()
        real_q_value2 = self.critic_network2(inputs_norm_tensor,
                                             actions_tensor)
        critic_loss2 = (target_q_value - real_q_value2).pow(2).mean()
        # the actor loss
        actions_real = self.actor_network(inputs_norm_tensor)
        actor_loss = -torch.min(
            self.critic_network1(inputs_norm_tensor, actions_real),
            self.critic_network2(inputs_norm_tensor, actions_real)).mean()
        actor_loss += self.args.action_l2 * (
            actions_real / self.env_params['action_max']).pow(2).mean()
        # start to update the network
        self.actor_optim.zero_grad()
        actor_loss.backward()
        sync_grads(self.actor_network)
        self.actor_optim.step()
        # update the critic_network
        self.critic_optim1.zero_grad()
        critic_loss1.backward()
        sync_grads(self.critic_network1)
        self.critic_optim1.step()

        self.critic_optim2.zero_grad()
        critic_loss2.backward()
        sync_grads(self.critic_network2)
        self.critic_optim2.step()

        self.logger.store(LossPi=actor_loss.detach().cpu().numpy())
        self.logger.store(LossQ=(critic_loss1 +
                                 critic_loss2).detach().cpu().numpy())

    # do the evaluation
    def _eval_agent(self):
        total_success_rate = []
        for _ in range(self.args.n_test_rollouts):
            per_success_rate = []
            observation = self.env.reset()
            obs = observation['observation']
            g = observation['desired_goal']
            for _ in range(self.env_params['max_timesteps']):
                with torch.no_grad():
                    input_tensor = self._preproc_inputs(obs, g)
                    pi = self.actor_network(input_tensor)
                    # convert the actions
                    actions = pi.detach().cpu().numpy().squeeze()
                observation_new, _, _, info = self.env.step(actions)
                obs = observation_new['observation']
                g = observation_new['desired_goal']
                per_success_rate.append(info['is_success'])
            total_success_rate.append(per_success_rate)
        total_success_rate = np.array(total_success_rate)
        local_success_rate = np.mean(total_success_rate[:, -1])
        global_success_rate = MPI.COMM_WORLD.allreduce(local_success_rate,
                                                       op=MPI.SUM)
        return global_success_rate / MPI.COMM_WORLD.Get_size()
示例#3
0
class gac_agent:
    def __init__(self, args, env, test_env, env_params):
        self.args = args

        # path to save the model
        if self.args.mmd:
            self.exp_name = '_'.join(
                (self.args.env_name, self.args.alg,
                 'mmd' + str(self.args.beta_mmd), 's' + str(self.args.seed),
                 datetime.now().isoformat()))
            self.data_path = os.path.join(
                self.args.save_dir, '_'.join(
                    (self.args.env_name, self.args.alg,
                     'mmd' + str(self.args.beta_mmd))), self.exp_name)
        else:
            self.exp_name = '_'.join(
                (self.args.env_name, self.args.alg, str(self.args.seed),
                 datetime.now().isoformat()))
            self.data_path = os.path.join(
                self.args.save_dir, '_'.join(
                    (self.args.env_name, self.args.alg)), self.exp_name)
        self.logger = EpochLogger(output_dir=self.data_path,
                                  exp_name=self.exp_name)
        self.logger.save_config(args)

        self.env = env
        self.test_env = test_env
        self.env_params = env_params
        # create the network
        self.actor_network = actor(env_params)
        self.critic_network1 = critic(env_params)
        self.critic_network2 = critic(env_params)
        self.advice_network1 = critic(env_params)
        self.advice_network2 = critic(env_params)
        # sync the networks across the cpus
        sync_networks(self.actor_network)
        sync_networks(self.critic_network1)
        sync_networks(self.critic_network2)
        sync_networks(self.advice_network1)
        sync_networks(self.advice_network2)
        # build up the target network
        # self.actor_target_network = actor(env_params)
        self.critic_target_network1 = critic(env_params)
        self.critic_target_network2 = critic(env_params)
        self.advice_target_network1 = critic(env_params)
        self.advice_target_network2 = critic(env_params)
        # load the weights into the target networks
        # self.actor_target_network.load_state_dict(self.actor_network.state_dict())
        self.critic_target_network1.load_state_dict(
            self.critic_network1.state_dict())
        self.critic_target_network2.load_state_dict(
            self.critic_network2.state_dict())
        self.advice_target_network1.load_state_dict(
            self.advice_network1.state_dict())
        self.advice_target_network2.load_state_dict(
            self.advice_network2.state_dict())

        # if use gpu
        self.rank = MPI.COMM_WORLD.Get_rank()
        self.mpi_size = MPI.COMM_WORLD.Get_size()
        if args.cuda:
            device = 'cuda:{}'.format(self.rank % torch.cuda.device_count())
        self.device = torch.device(device)

        if self.args.cuda:
            self.actor_network.cuda(self.device)
            self.critic_network1.cuda(self.device)
            self.critic_network2.cuda(self.device)
            # self.actor_target_network.cuda(self.device)
            self.critic_target_network1.cuda(self.device)
            self.critic_target_network2.cuda(self.device)

            self.advice_network1.cuda(self.device)
            self.advice_network2.cuda(self.device)
            self.advice_target_network1.cuda(self.device)
            self.advice_target_network2.cuda(self.device)

        # create the optimizer
        self.actor_optim = torch.optim.Adam(self.actor_network.parameters(),
                                            lr=self.args.lr_actor)
        self.critic_optim1 = torch.optim.Adam(
            self.critic_network1.parameters(), lr=self.args.lr_critic)
        self.critic_optim2 = torch.optim.Adam(
            self.critic_network2.parameters(), lr=self.args.lr_critic)
        self.advice_optim1 = torch.optim.Adam(
            self.advice_network1.parameters(), lr=self.args.lr_critic)
        self.advice_optim2 = torch.optim.Adam(
            self.advice_network2.parameters(), lr=self.args.lr_critic)

        # create the replay buffer
        self.buffer = ReplayBuffer(self.env_params['obs'],
                                   self.env_params['action'],
                                   self.args.buffer_size)

        self.logger.setup_pytorch_saver(self.actor_network)

        self.obs_mean, self.obs_std = self.buffer.obs_mean, self.buffer.obs_std

    def learn(self):
        """
        train the network

        """
        # start to collect samples
        obs, ep_rew, ep_cost, ep_len, done = self.env.reset(), 0, 0, 0, False
        for epoch in range(self.args.n_epochs):
            for _ in range(self.args.n_train_rollouts):
                for t in range(self.env_params['max_timesteps']):
                    with torch.no_grad():
                        input_tensor = self._preproc_inputs(obs)
                        action = self.actor_network(input_tensor)
                        action = action.detach().cpu().numpy().squeeze()
                    # feed the actions into the environment
                    next_obs, reward, done, info = self.env.step(
                        action * self.env_params['action_max'])
                    ep_rew += reward
                    ep_cost += info['cost']
                    ep_len += 1
                    self.buffer.store(obs, action, reward, info['cost'],
                                      next_obs, done)
                    obs = next_obs

                    if done or (ep_len == self.env_params['max_timesteps']
                                ) or (t % self.args.n_batches == 0):
                        self.buffer.obs_mean = MPI.COMM_WORLD.allreduce(
                            self.buffer.obs_mean, op=MPI.SUM) / self.mpi_size
                        self.buffer.obs_std = MPI.COMM_WORLD.allreduce(
                            self.buffer.obs_std, op=MPI.SUM) / self.mpi_size
                        self.obs_mean, self.obs_std = self.buffer.obs_mean, self.buffer.obs_std

                        self.buffer.rew_mean = MPI.COMM_WORLD.allreduce(
                            self.buffer.rew_mean, op=MPI.SUM) / self.mpi_size
                        self.buffer.rew_std = MPI.COMM_WORLD.allreduce(
                            self.buffer.rew_std, op=MPI.SUM) / self.mpi_size

                        self.buffer.cost_mean = MPI.COMM_WORLD.allreduce(
                            self.buffer.cost_mean, op=MPI.SUM) / self.mpi_size
                        self.buffer.cost_std = MPI.COMM_WORLD.allreduce(
                            self.buffer.cost_std, op=MPI.SUM) / self.mpi_size

                        for _ in range(self.args.n_batches):
                            # train the network
                            self._update_network()
                            # soft update
                            # self._soft_update_target_network(self.actor_target_network, self.actor_network)
                            self._soft_update_target_network(
                                self.critic_target_network1,
                                self.critic_network1, self.args.polyak)
                            self._soft_update_target_network(
                                self.critic_target_network2,
                                self.critic_network2, self.args.polyak)

                    if done or (ep_len == self.env_params['max_timesteps']):
                        self.logger.store(EpReward=ep_rew,
                                          EpCost=ep_cost,
                                          EpLen=ep_len)
                        obs, ep_rew, ep_cost, ep_len, done = self.env.reset(
                        ), 0, 0, 0, False

            # start to do the evaluation
            self._test_policy()

            # save some necessary objects
            state = {
                'observation_mean': self.buffer.obs_mean,
                'observation_std': self.buffer.obs_std
            }
            self.logger.save_state(state, None)

            t = ((epoch + 1) * self.mpi_size *
                 self.env_params['max_timesteps']) * self.args.n_train_rollouts

            self.logger.log_tabular('Epoch', epoch + 1)
            self.logger.log_tabular('EpReward', with_min_and_max=True)
            self.logger.log_tabular('EpCost', with_min_and_max=True)
            self.logger.log_tabular('EpLen', average_only=True)
            self.logger.log_tabular('TestReward', with_min_and_max=True)
            self.logger.log_tabular('TestCost', with_min_and_max=True)
            self.logger.log_tabular('TestLen', average_only=True)
            self.logger.log_tabular('LossPi', average_only=True)
            self.logger.log_tabular('LossQ', average_only=True)
            self.logger.log_tabular('MMDEntropy', average_only=True)
            self.logger.log_tabular('TotalEnvInteracts', t)
            self.logger.dump_tabular()

            if MPI.COMM_WORLD.Get_rank() == 0:
                print("obs_mean=", self.buffer.obs_mean)
                print("obs_std=", self.buffer.obs_std)
                print("reward_mean=", self.buffer.rew_mean)
                print("reward_std=", self.buffer.rew_std)
                print("cost_mean=", self.buffer.cost_mean)
                print("cost_std=", self.buffer.cost_std)

    # pre_process the inputs
    def _preproc_inputs(self, obs):
        inputs = ((np.array(obs) - self.obs_mean) /
                  (self.obs_std + 1e-8)).clip(-self.args.clip_range,
                                              self.args.clip_range)
        inputs = torch.tensor(inputs, dtype=torch.float32).unsqueeze(0)
        if self.args.cuda:
            inputs = inputs.cuda(self.device)
        return inputs

    # soft update
    def _soft_update_target_network(self, target, source, polyak):
        for target_param, param in zip(target.parameters(),
                                       source.parameters()):
            target_param.data.copy_((1 - polyak) * param.data +
                                    polyak * target_param.data)

    # update the network
    def _update_network(self):
        # sample the episodes
        batches = self.buffer.sample(self.args.batch_size)

        o = torch.FloatTensor(batches['obs']).to(self.device)
        o2 = torch.FloatTensor(batches['obs2']).to(self.device)
        a = torch.FloatTensor(batches['act']).to(self.device)
        r = torch.FloatTensor(batches['rew']).to(self.device)
        c = torch.FloatTensor(batches['cost']).to(self.device)
        d = torch.FloatTensor(batches['done']).to(self.device)

        # calculate the target Q value function
        with torch.no_grad():
            # do the normalization
            # concatenate the stuffs
            a2 = self.actor_network(o2)
            q_next_value1 = self.critic_target_network1(o2, a2).detach()
            q_next_value2 = self.critic_target_network2(o2, a2).detach()
            target_q_value = r + self.args.gamma * (1 - d) * torch.min(
                q_next_value1, q_next_value2)
            target_q_value = target_q_value.detach()

            p_next_value1 = self.advice_target_network1(o2, a2).detach()
            p_next_value2 = self.advice_target_network2(o2, a2).detach()
            target_p_value = -c + self.args.gamma * (1 - d) * torch.min(
                p_next_value1, p_next_value2)
            target_p_value = target_p_value.detach()

        # the q loss
        real_q_value1 = self.critic_network1(o, a)
        real_q_value2 = self.critic_network2(o, a)
        critic_loss1 = (target_q_value - real_q_value1).pow(2).mean()
        critic_loss2 = (target_q_value - real_q_value2).pow(2).mean()

        # the p loss
        real_p_value1 = self.advice_network1(o, a)
        real_p_value2 = self.advice_network2(o, a)
        advice_loss1 = (target_p_value - real_p_value1).pow(2).mean()
        advice_loss2 = (target_p_value - real_p_value2).pow(2).mean()

        # the actor loss
        o_exp = o.repeat(self.args.expand_batch, 1)
        a_exp = self.actor_network(o_exp)
        actor_loss = -torch.min(self.critic_network1(o_exp, a_exp),
                                self.critic_network2(o_exp, a_exp)).mean()
        actor_loss -= self.args.advice * torch.min(
            self.advice_network1(o_exp, a_exp),
            self.advice_network2(o_exp, a_exp)).mean()

        mmd_entropy = torch.tensor(0.0)

        if self.args.mmd:
            # mmd is computationally expensive
            a_exp_reshape = a_exp.view(self.args.expand_batch, -1,
                                       a_exp.shape[-1]).transpose(0, 1)
            with torch.no_grad():
                uniform_actions = (2 * torch.rand_like(a_exp_reshape) - 1)
            mmd_entropy = mmd(a_exp_reshape, uniform_actions)
            if self.args.beta_mmd <= 0.0:
                mmd_entropy.detach_()
            else:
                actor_loss += self.args.beta_mmd * mmd_entropy

        # start to update the network
        self.actor_optim.zero_grad()
        actor_loss.backward()
        sync_grads(self.actor_network)
        self.actor_optim.step()
        # update the critic_network
        self.critic_optim1.zero_grad()
        critic_loss1.backward()
        sync_grads(self.critic_network1)
        self.critic_optim1.step()
        self.critic_optim2.zero_grad()
        critic_loss2.backward()
        sync_grads(self.critic_network2)
        self.critic_optim2.step()

        self.logger.store(LossPi=actor_loss.detach().cpu().numpy())
        self.logger.store(LossQ=(critic_loss1 +
                                 critic_loss2).detach().cpu().numpy())
        self.logger.store(MMDEntropy=mmd_entropy.detach().cpu().numpy())

    # do the evaluation
    def _test_policy(self):
        for _ in range(self.args.n_test_rollouts):
            obs, ep_rew, ep_cost, ep_len, done = self.test_env.reset(
            ), 0, 0, 0, False
            while (not done and ep_len < self.env_params['max_timesteps']):
                with torch.no_grad():
                    input_tensor = self._preproc_inputs(obs)
                    action = self.actor_network(input_tensor, std=0.5)
                    action = action.detach().cpu().numpy().squeeze()
                obs_next, reward, done, info = self.test_env.step(action)
                obs = obs_next
                ep_rew += reward
                ep_cost += info['cost']
                ep_len += 1
            self.logger.store(TestReward=ep_rew,
                              TestCost=ep_cost,
                              TestLen=ep_len)
示例#4
0
def sac(args, steps_per_epoch=1500, replay_size=int(1e6), gamma=0.99,
        polyak=0.995, lr=1e-3, alpha=3e-4, batch_size=128, start_steps=1000,
        update_after=1000, update_every=1, num_test_episodes=10, max_ep_len=150,
        logger_kwargs=dict(), save_freq=1):

    logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)

    torch.set_num_threads(torch.get_num_threads())

    actor_critic = core.MLPActorCritic
    ac_kwargs = dict(hidden_sizes=[args.hid] * args.l)
    gamma = args.gamma
    seed = args.seed
    epochs = args.epochs
    logger_tensor = Logger(logdir=args.logdir, run_name="{}-{}".format(args.model_name, time.ctime()))

    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    torch.manual_seed(seed)
    np.random.seed(seed)

    env = ML1.get_train_tasks('reach-v1')  # Create an environment with task `pick_place`
    tasks = env.sample_tasks(1)  # Sample a task (in this case, a goal variation)
    env.set_task(tasks[0])  # Set task

    test_env = ML1.get_train_tasks('reach-v1')  # Create an environment with task `pick_place`
    tasks = env.sample_tasks(1)  # Sample a task (in this case, a goal variation)
    test_env.set_task(tasks[0])  # Set task

    obs_dim = env.observation_space.shape
    act_dim = env.action_space.shape[0]

    # Action limit for clamping: critically, assumes all dimensions share the same bound!
    act_limit = env.action_space.high[0]

    # Create actor-critic module and target networks
    ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
    ac_targ = deepcopy(ac)

    # Freeze target networks with respect to optimizers (only update via polyak averaging)
    for p in ac_targ.parameters():
        p.requires_grad = False

    # List of parameters for both Q-networks (save this for convenience)
    q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters())

    # Experience buffer
    replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size)

    # Count variables (protip: try to get a feel for how different size networks behave!)
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2])
    logger.log('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n' % var_counts)

    # Set up function for computing SAC Q-losses
    def compute_loss_q(data):
        o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done']

        q1 = ac.q1(o, a)
        q2 = ac.q2(o, a)

        # Bellman backup for Q functions
        with torch.no_grad():
            # Target actions come from *current* policy
            a2, logp_a2 = ac.pi(o2)

            # Target Q-values
            q1_pi_targ = ac_targ.q1(o2, a2)
            q2_pi_targ = ac_targ.q2(o2, a2)
            q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)
            backup = r + gamma * (1 - d) * (q_pi_targ - alpha * logp_a2)

        # MSE loss against Bellman backup
        loss_q1 = ((q1 - backup) ** 2).mean()
        loss_q2 = ((q2 - backup) ** 2).mean()
        loss_q = loss_q1 + loss_q2

        # Useful info for logging
        q_info = dict(Q1Vals=q1.detach().numpy(),
                      Q2Vals=q2.detach().numpy())

        return loss_q, q_info

    # Set up function for computing SAC pi loss
    def compute_loss_pi(data):
        o = data['obs']
        pi, logp_pi = ac.pi(o)
        q1_pi = ac.q1(o, pi)
        q2_pi = ac.q2(o, pi)
        q_pi = torch.min(q1_pi, q2_pi)

        # Entropy-regularized policy loss
        loss_pi = (alpha * logp_pi - q_pi).mean()

        # Useful info for logging
        pi_info = dict(LogPi=logp_pi.detach().numpy())

        return loss_pi, pi_info

    # Set up optimizers for policy and q-function
    pi_optimizer = Adam(ac.pi.parameters(), lr=3e-4)
    q_optimizer = Adam(q_params, lr=3e-4)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update(data, logger_tensor, t):
        # First run one gradient descent step for Q1 and Q2
        q_optimizer.zero_grad()
        loss_q, q_info = compute_loss_q(data)
        loss_q.backward()
        q_optimizer.step()

        # Record things
        logger.store(LossQ=loss_q.item(), **q_info)
        logger_tensor.log_value(t, loss_q.item(), "loss q")

        # Freeze Q-networks so you don't waste computational effort
        # computing gradients for them during the policy learning step.
        for p in q_params:
            p.requires_grad = False

        # Next run one gradient descent step for pi.
        pi_optimizer.zero_grad()
        loss_pi, pi_info = compute_loss_pi(data)
        loss_pi.backward()
        pi_optimizer.step()

        # Unfreeze Q-networks so you can optimize it at next DDPG step.
        for p in q_params:
            p.requires_grad = True

        # Record things
        logger.store(LossPi=loss_pi.item(), **pi_info)
        logger_tensor.log_value(t, loss_pi.item(), "loss pi")

        # Finally, update target networks by polyak averaging.
        with torch.no_grad():
            for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
                # NB: We use an in-place operations "mul_", "add_" to update target
                # params, as opposed to "mul" and "add", which would make new tensors.
                p_targ.data.mul_(polyak)
                p_targ.data.add_((1 - polyak) * p.data)

    def get_action(o, deterministic=False):
        return ac.act(torch.as_tensor(o, dtype=torch.float32),
                      deterministic)

    def test_agent():
        for j in range(num_test_episodes):
            o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
            while not (d or (ep_len == max_ep_len)):
                # Take deterministic actions at test time
                o, r, d, _ = test_env.step(get_action(o, True))
                ep_ret += r
                ep_len += 1
            logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)
            logger_tensor.log_value(t, ep_ret, "test ep reward")
            logger_tensor.log_value(t, ep_len, "test ep length")

    # Prepare for interaction with environment
    total_steps = steps_per_epoch * epochs
    start_time = time.time()
    o, ep_ret, ep_len = env.reset(), 0, 0
    # Main loop: collect experience in env and update/log each epoch
    for t in range(total_steps):

        # Until start_steps have elapsed, randomly sample actions
        # from a uniform distribution for better exploration. Afterwards,
        # use the learned policy.
        if t > start_steps:
            a = get_action(o)
        else:
            a = env.action_space.sample()

        # Step the env
        o2, r, d, _ = env.step(a)
        ep_ret += r
        ep_len += 1
        # Ignore the "done" signal if it comes from hitting the time
        # horizon (that is, when it's an artificial terminal signal
        # that isn't based on the agent's state)
        d = False if ep_len == max_ep_len else d
        # Store experience to replay buffer
        replay_buffer.store(o, a, r, o2, d)

        # Super critical, easy to overlook step: make sure to update
        # most recent observation!
        o = o2

        # End of trajectory handling
        if d or (ep_len == max_ep_len):
            logger_tensor.log_value(t, ep_ret, "reward")
            logging.info("> total_steps={} | reward={}".format(t, ep_ret))
            logger.store(EpRet=ep_ret, EpLen=ep_len)
            o, ep_ret, ep_len = env.reset(), 0, 0


        # Update handling
        if t >= update_after and t % update_every == 0:
            for j in range(update_every):
                batch = replay_buffer.sample_batch(batch_size)
                update(data=batch, logger_tensor = logger_tensor, t = t)

        # End of epoch handling
        if (t + 1) % steps_per_epoch == 0:
            epoch = (t + 1) // steps_per_epoch

            # Save model
            if (epoch % save_freq == 0) or (epoch == epochs):
                logger.save_state({'env': env}, None)

            # Test the performance of the deterministic version of the agent.
            test_agent()

            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('TestEpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('TestEpLen', average_only=True)
            logger.log_tabular('TotalEnvInteracts', t)
            logger.log_tabular('Q1Vals', with_min_and_max=True)
            logger.log_tabular('Q2Vals', with_min_and_max=True)
            logger.log_tabular('LogPi', with_min_and_max=True)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossQ', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)

            logger_tensor.log_value(t, epoch, "epoch")
            logger.dump_tabular(logger_tensor=logger_tensor,epoch = epoch)
            ac.save(args.save_model_dir, args.model_name)
def ppo(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=1000,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10):
    """
    Proximal Policy Optimization (by clipping), 

    with early stopping based on approximate KL

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with a 
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v`` 
            module. The ``step`` method should accept a batch of observations 
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================

            The ``act`` method behaves the same as ``step`` but only returns ``a``.

            The ``pi`` module's forward call should accept a batch of 
            observations and optionally a batch of actions, and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing 
                                           | the log probability, according to 
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================

            The ``v`` module's forward call should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical: 
                                           | make sure to flatten this!)
            ===========  ================  ======================================


        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while 
            still profiting (improving the objective function)? The new policy 
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
            denoted by :math:`\epsilon`. 

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take 
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used 
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    # GAedit
    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    # setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # GAedit
    # Seed
    seed = 333
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    #GAedit
    # obs_dim = env.observation_space.shape
    # act_dim = env.action_space.shape
    # get the default brain
    brain_name = env.brain_names[0]
    brain = env.brains[brain_name]
    # reset the environment
    env_info = env.reset(train_mode=True)[brain_name]
    # number of agents
    num_agents = len(env_info.agents)
    # size of each action
    act_dim = brain.vector_action_space_size
    # examine the state space
    obs_dim = env_info.vector_observations.shape[1]

    #GAedit
    # Create actor-critic module
    # ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
    ac = actor_critic(obs_dim, act_dim, **ac_kwargs)

    # GAedit - don't think we need to sync
    # Sync params across processes
    # sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Set up experience buffer
    # GAedit
    # local_steps_per_epoch = int(steps_per_epoch / num_procs())
    local_steps_per_epoch = int(steps_per_epoch / num_agents)
    #GAedit
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch * num_agents,
                    gamma, lam)

    # buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing PPO policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data[
            'logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        ratio = torch.exp(logp - logp_old)
        clip_adv = torch.clamp(ratio, 1 - clip_ratio, 1 + clip_ratio) * adv
        loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
        clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
        pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        data = buf.get()

        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with multiple steps of gradient descent
        for i in range(train_pi_iters):
            pi_optimizer.zero_grad()
            loss_pi, pi_info = compute_loss_pi(data)
            #GAedit
            # kl = mpi_avg(pi_info['kl'])
            kl = pi_info['kl']
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
            loss_pi.backward()
            #GAedit
            # mpi_avg_grads(ac.pi)    # average grads across MPI processes
            # ac.pi.mean()
            pi_optimizer.step()

        logger.store(StopIter=i)

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            #GAedit
            # mpi_avg_grads(ac.v)    # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # Prepare for interaction with environment
    start_time = time.time()
    #GAedit
    # o, ep_ret, ep_len = env.reset(), 0, 0
    ep_ret, ep_len = 0, 0
    env_info = env.reset(train_mode=True)[brain_name]
    o = env_info.vector_observations
    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            a, v, logp = ac.step(torch.as_tensor(o, dtype=torch.float32))
            # GAedit
            # next_o, r, d, _ = env.step(a)
            env_info = env.step(a)[brain_name]
            next_o, r, d = env_info.vector_observations, env_info.rewards, env_info.local_done
            #GAedit
            # ep_ret += r
            ep_ret += np.mean(r)
            ep_len += 1

            # save and log
            #GAedit
            # buf.store(o, a, r, v, logp)
            for i in range(20):
                buf.store(o[i], a[i], r[i], v[i], logp[i])
            logger.store(VVals=v)

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            # GAedit
            # terminal = d or timeout
            terminal = any(d) or timeout
            epoch_ended = t == local_steps_per_epoch - 1

            if terminal or epoch_ended:
                if epoch_ended and not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len,
                          flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    _, v, _ = ac.step(torch.as_tensor(o, dtype=torch.float32))
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                # GAedit
                # o, ep_ret, ep_len = env.reset(), 0, 0
                ep_ret, ep_len = 0, 0
                env_info = env.reset(train_mode=True)[brain_name]
                o = env_info.vector_observations

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        update()

        # Log info about epoch
        logger.log_tabular('Epoch', epoch)
        logger.log_tabular('EpRet', with_min_and_max=True)
        logger.log_tabular('EpLen', average_only=True)
        logger.log_tabular('VVals', with_min_and_max=True)
        logger.log_tabular('TotalEnvInteracts', (epoch + 1) * steps_per_epoch)
        logger.log_tabular('LossPi', average_only=True)
        logger.log_tabular('LossV', average_only=True)
        logger.log_tabular('DeltaLossPi', average_only=True)
        logger.log_tabular('DeltaLossV', average_only=True)
        logger.log_tabular('Entropy', average_only=True)
        logger.log_tabular('KL', average_only=True)
        logger.log_tabular('ClipFrac', average_only=True)
        logger.log_tabular('StopIter', average_only=True)
        logger.log_tabular('Time', time.time() - start_time)
        logger.dump_tabular()
示例#6
0
def ppo(env_fn,
        actor_critic=core.MLPActorCritic,
        ac_kwargs=dict(),
        seed=0,
        steps_per_epoch=4000,
        epochs=50,
        gamma=0.99,
        clip_ratio=0.2,
        pi_lr=3e-4,
        vf_lr=1e-3,
        train_pi_iters=80,
        train_v_iters=80,
        lam=0.97,
        max_ep_len=2000,
        target_kl=0.01,
        logger_kwargs=dict(),
        save_freq=10):

    global RENDER, BONUS
    """
    Proximal Policy Optimization (by clipping), 

    with early stopping based on approximate KL

    Args:
        env_fn : A function which creates a copy of the environment.
            The environment must satisfy the OpenAI Gym API.

        actor_critic: The constructor method for a PyTorch Module with a 
            ``step`` method, an ``act`` method, a ``pi`` module, and a ``v`` 
            module. The ``step`` method should accept a batch of observations 
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``a``        (batch, act_dim)  | Numpy array of actions for each 
                                           | observation.
            ``v``        (batch,)          | Numpy array of value estimates
                                           | for the provided observations.
            ``logp_a``   (batch,)          | Numpy array of log probs for the
                                           | actions in ``a``.
            ===========  ================  ======================================

            The ``act`` method behaves the same as ``step`` but only returns ``a``.

            The ``pi`` module's forward call should accept a batch of 
            observations and optionally a batch of actions, and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``pi``       N/A               | Torch Distribution object, containing
                                           | a batch of distributions describing
                                           | the policy for the provided observations.
            ``logp_a``   (batch,)          | Optional (only returned if batch of
                                           | actions is given). Tensor containing 
                                           | the log probability, according to 
                                           | the policy, of the provided actions.
                                           | If actions not given, will contain
                                           | ``None``.
            ===========  ================  ======================================

            The ``v`` module's forward call should accept a batch of observations
            and return:

            ===========  ================  ======================================
            Symbol       Shape             Description
            ===========  ================  ======================================
            ``v``        (batch,)          | Tensor containing the value estimates
                                           | for the provided observations. (Critical: 
                                           | make sure to flatten this!)
            ===========  ================  ======================================


        ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object 
            you provided to PPO.

        seed (int): Seed for random number generators.

        steps_per_epoch (int): Number of steps of interaction (state-action pairs) 
            for the agent and the environment in each epoch.

        epochs (int): Number of epochs of interaction (equivalent to
            number of policy updates) to perform.

        gamma (float): Discount factor. (Always between 0 and 1.)

        clip_ratio (float): Hyperparameter for clipping in the policy objective.
            Roughly: how far can the new policy go from the old policy while 
            still profiting (improving the objective function)? The new policy 
            can still go farther than the clip_ratio says, but it doesn't help
            on the objective anymore. (Usually small, 0.1 to 0.3.) Typically
            denoted by :math:`\epsilon`. 

        pi_lr (float): Learning rate for policy optimizer.

        vf_lr (float): Learning rate for value function optimizer.

        train_pi_iters (int): Maximum number of gradient descent steps to take 
            on policy loss per epoch. (Early stopping may cause optimizer
            to take fewer than this.)

        train_v_iters (int): Number of gradient descent steps to take on 
            value function per epoch.

        lam (float): Lambda for GAE-Lambda. (Always between 0 and 1,
            close to 1.)

        max_ep_len (int): Maximum length of trajectory / episode / rollout.

        target_kl (float): Roughly what KL divergence we think is appropriate
            between new and old policies after an update. This will get used 
            for early stopping. (Usually small, 0.01 or 0.05.)

        logger_kwargs (dict): Keyword args for EpochLogger.

        save_freq (int): How often (in terms of gap between epochs) to save
            the current policy and value function.

    """

    # Reachability Trainer
    r_network = R_Network().to(device)
    trainer = R_Network_Trainer(r_network=r_network, exp_name="random1")
    episodic_memory = EpisodicMemory(embedding_shape=[EMBEDDING_DIM])

    # Special function to avoid certain slowdowns from PyTorch + MPI combo.
    setup_pytorch_for_mpi()

    # Set up logger and save configuration
    logger = EpochLogger(**logger_kwargs)
    logger.save_config(locals())

    # Random seed
    seed += 10000 * proc_id()
    torch.manual_seed(seed)
    np.random.seed(seed)

    # Instantiate environment
    env = env_fn()
    observation_space = gym.spaces.Box(low=0.0, high=1.0, shape=(3, 64, 64))
    action_space = gym.spaces.Discrete(3)
    obs_dim = observation_space.shape
    act_dim = action_space.shape

    # Create actor-critic module
    ac = actor_critic(observation_space, action_space, **ac_kwargs)

    # Sync params across processes
    sync_params(ac)

    # Count variables
    var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.v])
    logger.log('\nNumber of parameters: \t pi: %d, \t v: %d\n' % var_counts)

    # Set up experience buffer
    local_steps_per_epoch = int(steps_per_epoch / num_procs())
    buf = PPOBuffer(obs_dim, act_dim, local_steps_per_epoch, gamma, lam)

    # Set up function for computing PPO policy loss
    def compute_loss_pi(data):
        obs, act, adv, logp_old = data['obs'], data['act'], data['adv'], data[
            'logp']

        # Policy loss
        pi, logp = ac.pi(obs, act)
        ratio = torch.exp(logp - logp_old)
        clip_adv = torch.clamp(ratio, 1 - clip_ratio, 1 + clip_ratio) * adv
        loss_pi = -(torch.min(ratio * adv, clip_adv)).mean()

        # Useful extra info
        approx_kl = (logp_old - logp).mean().item()
        ent = pi.entropy().mean().item()
        clipped = ratio.gt(1 + clip_ratio) | ratio.lt(1 - clip_ratio)
        clipfrac = torch.as_tensor(clipped, dtype=torch.float32).mean().item()
        pi_info = dict(kl=approx_kl, ent=ent, cf=clipfrac)

        return loss_pi, pi_info

    # Set up function for computing value loss
    def compute_loss_v(data):
        obs, ret = data['obs'], data['ret']
        return ((ac.v(obs) - ret)**2).mean()

    # Set up optimizers for policy and value function
    pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
    vf_optimizer = Adam(ac.v.parameters(), lr=vf_lr)

    # Set up model saving
    logger.setup_pytorch_saver(ac)

    def update():
        data = buf.get()

        pi_l_old, pi_info_old = compute_loss_pi(data)
        pi_l_old = pi_l_old.item()
        v_l_old = compute_loss_v(data).item()

        # Train policy with multiple steps of gradient descent
        for i in range(train_pi_iters):
            pi_optimizer.zero_grad()
            loss_pi, pi_info = compute_loss_pi(data)
            # Entropy bonus
            loss_pi += pi_info['ent'] * 0.0021
            kl = mpi_avg(pi_info['kl'])
            if kl > 1.5 * target_kl:
                logger.log(
                    'Early stopping at step %d due to reaching max kl.' % i)
                break
            loss_pi.backward()
            mpi_avg_grads(ac.pi)  # average grads across MPI processes
            pi_optimizer.step()

        logger.store(StopIter=i)

        # Value function learning
        for i in range(train_v_iters):
            vf_optimizer.zero_grad()
            loss_v = compute_loss_v(data)
            loss_v.backward()
            mpi_avg_grads(ac.v)  # average grads across MPI processes
            vf_optimizer.step()

        # Log changes from update
        kl, ent, cf = pi_info['kl'], pi_info_old['ent'], pi_info['cf']
        logger.store(LossPi=pi_l_old,
                     LossV=v_l_old,
                     KL=kl,
                     Entropy=ent,
                     ClipFrac=cf,
                     DeltaLossPi=(loss_pi.item() - pi_l_old),
                     DeltaLossV=(loss_v.item() - v_l_old))

    # Prepare for interaction with environment
    start_time = time.time()
    o, _ = env.reset()
    env.render()
    o = o.astype(np.float32) / 255.
    o = o.transpose(2, 0, 1)
    ep_ret, ep_len = 0, 0
    indices = []

    # Main loop: collect experience in env and update/log each epoch
    for epoch in range(epochs):
        for t in range(local_steps_per_epoch):
            state = torch.as_tensor(o[np.newaxis, ...], dtype=torch.float32)
            a, v, logp = ac.step(state)

            next_o, r, d, info = env.step(a)
            next_o = next_o.astype(np.float32) / 255.

            d = ep_len == max_ep_len
            trainer.store_new_state([next_o], [r], [d], [None])

            r_network.eval()
            with torch.no_grad():
                state_embedding = r_network.embed_observation(
                    torch.FloatTensor([o]).to(device)).cpu().numpy()[0]
                aggregated, _, _ = similarity_to_memory(
                    state_embedding, episodic_memory, r_network)
                curiosity_bonus = 0.03 * (0.5 - aggregated)
                if BONUS:
                    print(f'{curiosity_bonus:.3f}')
                if curiosity_bonus > 0 or len(episodic_memory) == 0:
                    idx = episodic_memory.store_new_state(state_embedding)
                    x = int(env.map_scale * info['pose']['x'])
                    y = int(env.map_scale * info['pose']['y'])
                    if idx == len(indices):
                        indices.append((x, y))
                    else:
                        indices[idx] = (x, y)

            r_network.train()

            next_o = next_o.transpose(2, 0, 1)
            ep_ret += r + curiosity_bonus
            ep_len += 1

            # save and log
            buf.store(o, a, r, v, logp)
            logger.store(VVals=v)

            k = cv2.waitKey(1)
            if k == ord('s'):
                RENDER = 1 - RENDER
            elif k == ord('b'):
                BONUS = 1 - BONUS

            if RENDER:
                env.info['map'] = cv2.flip(env.info['map'], 0)
                for index in indices:
                    cv2.circle(env.info['map'], index, 3, (0, 0, 255), -1)
                env.info['map'] = cv2.flip(env.info['map'], 0)
                env.render()

            # Update obs (critical!)
            o = next_o

            timeout = ep_len == max_ep_len
            terminal = d or timeout
            epoch_ended = t == local_steps_per_epoch - 1

            if terminal or epoch_ended:
                if epoch_ended and not (terminal):
                    print('Warning: trajectory cut off by epoch at %d steps.' %
                          ep_len,
                          flush=True)
                # if trajectory didn't reach terminal state, bootstrap value target
                if timeout or epoch_ended:
                    state = torch.as_tensor(o[np.newaxis, ...],
                                            dtype=torch.float32)
                    _, v, _ = ac.step(state)
                else:
                    v = 0
                buf.finish_path(v)
                if terminal:
                    # only save EpRet / EpLen if trajectory finished
                    logger.store(EpRet=ep_ret, EpLen=ep_len)
                print(ep_ret, ep_len, len(episodic_memory))
                ep_ret, ep_len = 0, 0
                o, _ = env.reset()
                o = o.astype(np.float32) / 255.
                o = o.transpose(2, 0, 1)
                episodic_memory.reset()
                indices = []

        # Save model
        if (epoch % save_freq == 0) or (epoch == epochs - 1):
            logger.save_state({'env': env}, None)

        # Perform PPO update!
        if epoch > 4:
            update()
            # Log info about epoch
            logger.log_tabular('Epoch', epoch)
            logger.log_tabular('EpRet', with_min_and_max=True)
            logger.log_tabular('EpLen', average_only=True)
            logger.log_tabular('VVals', with_min_and_max=True)
            logger.log_tabular('TotalEnvInteracts',
                               (epoch + 1) * steps_per_epoch)
            logger.log_tabular('LossPi', average_only=True)
            logger.log_tabular('LossV', average_only=True)
            logger.log_tabular('DeltaLossPi', average_only=True)
            logger.log_tabular('DeltaLossV', average_only=True)
            logger.log_tabular('Entropy', average_only=True)
            logger.log_tabular('KL', average_only=True)
            logger.log_tabular('ClipFrac', average_only=True)
            logger.log_tabular('StopIter', average_only=True)
            logger.log_tabular('Time', time.time() - start_time)
            logger.dump_tabular()

        else:
            buf.get()