示例#1
0
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
示例#2
0
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.yolo_detection_layer = YOLODetectionLayer(configer)
        self.yolo_target_generator = YOLOTargetGenerator(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()
示例#3
0
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.ssd_target_generator = SSDTargetGenerator(configer)
        self.ssd_priorbox_layer = SSDPriorBoxLayer(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)
        self.data_transformer = DataTransformer(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()
示例#4
0
class YOLOv3(object):
    """
      The class for YOLO v3. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.yolo_detection_layer = YOLODetectionLayer(configer)
        self.yolo_target_generator = YOLOTargetGenerator(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            self._get_parameters())

        self.train_loader = self.det_data_loader.get_trainloader()
        self.val_loader = self.det_data_loader.get_valloader()

        self.det_loss = self.det_loss_manager.get_det_loss('yolov3_loss')

    def _get_parameters(self):
        lr_1 = []
        lr_10 = []
        params_dict = dict(self.det_net.named_parameters())
        for key, value in params_dict.items():
            if 'backbone.' not in key:
                lr_10.append(value)
            else:
                lr_1.append(value)

        params = [{
            'params': lr_1,
            'lr': self.configer.get('lr', 'base_lr')
        }, {
            'params': lr_10,
            'lr': self.configer.get('lr', 'base_lr') * 10.
        }]

        return params

    def warm_lr(self, batch_len):
        """Sets the learning rate
        # Adapted from PyTorch Imagenet example:
        # https://github.com/pytorch/examples/blob/master/imagenet/main.py
        """
        warm_iters = self.configer.get('lr', 'warm')['warm_epoch'] * batch_len
        if self.configer.get('iters') < warm_iters:
            lr_ratio = (self.configer.get('iters') + 1) / warm_iters

            base_lr_list = self.scheduler.get_lr()
            for param_group, base_lr in zip(self.optimizer.param_groups,
                                            base_lr_list):
                param_group['lr'] = base_lr * lr_ratio

            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info('LR: {}'.format([
                    param_group['lr']
                    for param_group in self.optimizer.param_groups
                ]))

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        self.det_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.configer.plus_one('epoch')
        self.scheduler.step(self.configer.get('epoch'))

        # data_tuple: (inputs, heatmap, maskmap, vecmap)
        for i, data_dict in enumerate(self.train_loader):
            if not self.configer.is_empty(
                    'lr', 'is_warm') and self.configer.get('lr', 'is_warm'):
                self.warm_lr(len(self.train_loader))

            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            input_size = [inputs.size(3), inputs.size(2)]

            self.data_time.update(time.time() - start_time)
            # Change the data type.
            inputs = self.module_utilizer.to_device(inputs)

            # Forward pass.
            feat_list, predictions, _ = self.det_net(inputs)

            targets, objmask, noobjmask = self.yolo_target_generator(
                feat_list, batch_gt_bboxes, batch_gt_labels, input_size)
            targets, objmask, noobjmask = self.module_utilizer.to_device(
                targets, objmask, noobjmask)
            # Compute the loss of the train batch & backward.
            loss = self.det_loss(predictions, targets, objmask, noobjmask)

            self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.scheduler.get_lr(),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            # Check to val the current model.
            if self.val_loader is not None and \
               (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0:
                self.__val()

    def __val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for i, data_dict in enumerate(self.val_loader):
                inputs = data_dict['img']
                batch_gt_bboxes = data_dict['bboxes']
                batch_gt_labels = data_dict['labels']
                input_size = [inputs.size(3), inputs.size(2)]
                # Forward pass.
                inputs = self.module_utilizer.to_device(inputs)
                feat_list, predictions, detections = self.det_net(inputs)

                targets, objmask, noobjmask = self.yolo_target_generator(
                    feat_list, batch_gt_bboxes, batch_gt_labels, input_size)
                targets, objmask, noobjmask = self.module_utilizer.to_device(
                    targets, objmask, noobjmask)

                # Compute the loss of the val batch.
                loss = self.det_loss(predictions, targets, objmask, noobjmask)
                self.val_losses.update(loss.item(), inputs.size(0))

                batch_detections = YOLOv3Test.decode(detections, self.configer)
                batch_pred_bboxes = self.__get_object_list(
                    batch_detections, input_size)

                self.det_running_score.update(batch_pred_bboxes,
                                              batch_gt_bboxes, batch_gt_labels)

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.module_utilizer.save_net(self.det_net, save_mode='iters')
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            Log.info('Val mAP: {}'.format(self.det_running_score.get_mAP()))
            self.det_running_score.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()

    def __get_object_list(self, batch_detections, input_size):
        batch_pred_bboxes = list()
        for idx, detections in enumerate(batch_detections):
            object_list = list()
            if detections is not None:
                for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
                    xmin = x1.cpu().item() * input_size[0]
                    ymin = y1.cpu().item() * input_size[1]
                    xmax = x2.cpu().item() * input_size[0]
                    ymax = y2.cpu().item() * input_size[1]
                    cf = conf.cpu().item()
                    cls_pred = cls_pred.cpu().item()
                    object_list.append([
                        xmin, ymin, xmax, ymax,
                        int(cls_pred),
                        float('%.2f' % cf)
                    ])

            batch_pred_bboxes.append(object_list)

        return batch_pred_bboxes

    def train(self):
        cudnn.benchmark = True
        if self.configer.get('network',
                             'resume') is not None and self.configer.get(
                                 'network', 'resume_val'):
            self.__val()

        while self.configer.get('epoch') < self.configer.get(
                'solver', 'max_epoch'):
            self.__train()
            if self.configer.get('epoch') == self.configer.get(
                    'solver', 'max_epoch'):
                break
示例#5
0
class FasterRCNN(object):
    """
      The class for Single Shot Detector. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.fr_priorbox_layer = FRPriorBoxLayer(configer)
        self.rpn_target_generator = RPNTargetGenerator(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            self._get_parameters())

        self.train_loader = self.det_data_loader.get_trainloader()
        self.val_loader = self.det_data_loader.get_valloader()

        self.fr_loss = self.det_loss_manager.get_det_loss('fr_loss')

    def _get_parameters(self):
        lr_1 = []
        lr_2 = []
        params_dict = dict(self.det_net.named_parameters())
        for key, value in params_dict.items():
            if value.requires_grad:
                if 'bias' in key:
                    lr_2.append(value)
                else:
                    lr_1.append(value)

        params = [{
            'params': lr_1,
            'lr': self.configer.get('lr', 'base_lr')
        }, {
            'params': lr_2,
            'lr': self.configer.get('lr', 'base_lr') * 2.,
            'weight_decay': 0
        }]
        return params

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        self.det_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.configer.plus_one('epoch')
        self.scheduler.step(self.configer.get('epoch'))

        for i, data_dict in enumerate(self.train_loader):
            inputs = data_dict['img']
            img_scale = data_dict['imgscale']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            self.data_time.update(time.time() - start_time)
            # Change the data type.
            gt_bboxes, gt_nums, gt_labels = self.__make_tensor(
                batch_gt_bboxes, batch_gt_labels)

            gt_bboxes, gt_num, gt_labels = self.module_utilizer.to_device(
                gt_bboxes, gt_nums, gt_labels)
            inputs = self.module_utilizer.to_device(inputs)
            # Forward pass.
            feat_list, train_group = self.det_net(inputs, gt_bboxes, gt_num,
                                                  gt_labels, img_scale)
            gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator(
                feat_list, batch_gt_bboxes,
                [inputs.size(3), inputs.size(2)])
            gt_rpn_locs, gt_rpn_labels = self.module_utilizer.to_device(
                gt_rpn_locs, gt_rpn_labels)

            rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores, gt_roi_bboxes, gt_roi_labels = train_group

            # Compute the loss of the train batch & backward.
            loss = self.fr_loss(
                [rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores],
                [gt_rpn_locs, gt_rpn_labels, gt_roi_bboxes, gt_roi_labels])

            self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.module_utilizer.clip_grad(self.det_net, 10.)
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.scheduler.get_lr(),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            # Check to val the current model.
            if self.val_loader is not None and \
               (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0:
                self.__val()

    def __val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                inputs = data_dict['img']
                img_scale = data_dict['imgscale']
                batch_gt_bboxes = data_dict['bboxes']
                batch_gt_labels = data_dict['labels']
                # Change the data type.
                gt_bboxes, gt_nums, gt_labels = self.__make_tensor(
                    batch_gt_bboxes, batch_gt_labels)
                gt_bboxes, gt_num, gt_labels = self.module_utilizer.to_device(
                    gt_bboxes, gt_nums, gt_labels)
                inputs = self.module_utilizer.to_device(inputs)

                # Forward pass.
                feat_list, train_group, test_group = self.det_net(
                    inputs, gt_bboxes, gt_nums, gt_labels, img_scale)
                rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores, gt_roi_bboxes, gt_roi_labels = train_group

                gt_rpn_locs, gt_rpn_labels = self.rpn_target_generator(
                    feat_list, batch_gt_bboxes,
                    [inputs.size(3), inputs.size(2)])
                gt_rpn_locs, gt_rpn_labels = self.module_utilizer.to_device(
                    gt_rpn_locs, gt_rpn_labels)

                # Compute the loss of the train batch & backward.
                loss = self.fr_loss(
                    [rpn_locs, rpn_scores, sample_roi_locs, sample_roi_scores],
                    [gt_rpn_locs, gt_rpn_labels, gt_roi_bboxes, gt_roi_labels])

                self.val_losses.update(loss.item(), inputs.size(0))
                test_indices_and_rois, test_roi_locs, test_roi_scores, test_rois_num = test_group
                batch_detections = FastRCNNTest.decode(
                    test_roi_locs, test_roi_scores, test_indices_and_rois,
                    test_rois_num, self.configer,
                    [inputs.size(3), inputs.size(2)])
                batch_pred_bboxes = self.__get_object_list(batch_detections)
                self.det_running_score.update(batch_pred_bboxes,
                                              batch_gt_bboxes, batch_gt_labels)

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.module_utilizer.save_net(self.det_net, save_mode='iters')
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            Log.info('Val mAP: {}\n'.format(self.det_running_score.get_mAP()))
            self.det_running_score.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()

    def __make_tensor(self, gt_bboxes, gt_labels):
        len_arr = [gt_labels[i].numel() for i in range(len(gt_bboxes))]
        batch_maxlen = max(max(len_arr), 1)
        target_bboxes = torch.zeros((len(gt_bboxes), batch_maxlen, 4)).float()
        target_labels = torch.zeros((len(gt_bboxes), batch_maxlen)).long()
        for i in range(len(gt_bboxes)):
            if len_arr[i] == 0:
                continue

            target_bboxes[i, :len_arr[i], :] = gt_bboxes[i].clone()
            target_labels[i, :len_arr[i]] = gt_labels[i].clone()

        target_bboxes_num = torch.Tensor(len_arr).long()
        return target_bboxes, target_bboxes_num, target_labels

    def __get_object_list(self, batch_detections):
        batch_pred_bboxes = list()
        for idx, detections in enumerate(batch_detections):
            object_list = list()
            if detections is not None:
                for x1, y1, x2, y2, conf, cls_pred in detections:
                    xmin = x1.cpu().item()
                    ymin = y1.cpu().item()
                    xmax = x2.cpu().item()
                    ymax = y2.cpu().item()
                    cf = conf.cpu().item()
                    cls_pred = int(cls_pred.cpu().item()) - 1
                    object_list.append(
                        [xmin, ymin, xmax, ymax, cls_pred,
                         float('%.2f' % cf)])

            batch_pred_bboxes.append(object_list)

        return batch_pred_bboxes

    def train(self):
        cudnn.benchmark = True
        if self.configer.get('network',
                             'resume') is not None and self.configer.get(
                                 'network', 'resume_val'):
            self.__val()

        while self.configer.get('epoch') < self.configer.get(
                'solver', 'max_epoch'):
            self.__train()
            if self.configer.get('epoch') == self.configer.get(
                    'solver', 'max_epoch'):
                break
示例#6
0
class SingleShotDetector(object):
    """
      The class for Single Shot Detector. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.ssd_target_generator = SSDTargetGenerator(configer)
        self.ssd_priorbox_layer = SSDPriorBoxLayer(configer)
        self.det_running_score = DetRunningScore(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)
        self.data_transformer = DataTransformer(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()

    def _init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            self._get_parameters())

        self.train_loader = self.det_data_loader.get_trainloader()
        self.val_loader = self.det_data_loader.get_valloader()

        self.det_loss = self.det_loss_manager.get_det_loss('ssd_multibox_loss')

    def _get_parameters(self):

        return self.det_net.parameters()

    def warm_lr(self, batch_len):
        """Sets the learning rate
        # Adapted from PyTorch Imagenet example:
        # https://github.com/pytorch/examples/blob/master/imagenet/main.py
        """
        warm_iters = self.configer.get('lr', 'warm')['warm_epoch'] * batch_len
        warm_lr = self.configer.get('lr', 'warm')['warm_lr']
        if self.configer.get('iters') < warm_iters:
            lr_delta = (self.configer.get('lr', 'base_lr') -
                        warm_lr) * self.configer.get('iters') / warm_iters
            lr = warm_lr + lr_delta

            for param_group in self.optimizer.param_groups:
                param_group['lr'] = lr

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        self.det_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.configer.plus_one('epoch')
        self.scheduler.step(self.configer.get('epoch'))

        # data_tuple: (inputs, heatmap, maskmap, vecmap)
        for i, data_dict in enumerate(self.train_loader):
            if not self.configer.is_empty(
                    'lr', 'is_warm') and self.configer.get('lr', 'is_warm'):
                self.warm_lr(len(self.train_loader))

            inputs = data_dict['img']
            batch_gt_bboxes = data_dict['bboxes']
            batch_gt_labels = data_dict['labels']
            # Change the data type.
            inputs = self.module_utilizer.to_device(inputs)

            self.data_time.update(time.time() - start_time)
            # Forward pass.
            feat_list, loc, cls = self.det_net(inputs)

            bboxes, labels = self.ssd_target_generator(
                feat_list, batch_gt_bboxes, batch_gt_labels,
                [inputs.size(3), inputs.size(2)])

            bboxes, labels = self.module_utilizer.to_device(bboxes, labels)
            # Compute the loss of the train batch & backward.
            loss = self.det_loss(loc, bboxes, cls, labels)

            self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.scheduler.get_lr(),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            # Check to val the current model.
            if self.val_loader is not None and \
               (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0:
                self.__val()

    def __val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                inputs = data_dict['img']
                batch_gt_bboxes = data_dict['bboxes']
                batch_gt_labels = data_dict['labels']
                inputs = self.module_utilizer.to_device(inputs)
                input_size = [inputs.size(3), inputs.size(2)]
                # Forward pass.
                feat_list, loc, cls = self.det_net(inputs)
                bboxes, labels = self.ssd_target_generator(
                    feat_list, batch_gt_bboxes, batch_gt_labels, input_size)

                bboxes, labels = self.module_utilizer.to_device(bboxes, labels)
                # Compute the loss of the val batch.
                loss = self.det_loss(loc, bboxes, cls, labels)
                self.val_losses.update(loss.item(), inputs.size(0))

                batch_detections = SingleShotDetectorTest.decode(
                    loc, cls, self.ssd_priorbox_layer(feat_list, input_size),
                    self.configer, input_size)
                batch_pred_bboxes = self.__get_object_list(batch_detections)
                # batch_pred_bboxes = self._get_gt_object_list(batch_gt_bboxes, batch_gt_labels)
                self.det_running_score.update(batch_pred_bboxes,
                                              batch_gt_bboxes, batch_gt_labels)

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.module_utilizer.save_net(self.det_net, save_mode='iters')
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            Log.info('Val mAP: {}'.format(self.det_running_score.get_mAP()))
            self.det_running_score.reset()
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()

    def _get_gt_object_list(self, batch_gt_bboxes, batch_gt_labels):
        batch_pred_bboxes = list()
        for i in range(len(batch_gt_bboxes)):
            object_list = list()
            if batch_gt_bboxes[i].numel() > 0:
                for j in range(batch_gt_bboxes[i].size(0)):
                    object_list.append([
                        batch_gt_bboxes[i][j][0].item(),
                        batch_gt_bboxes[i][j][1].item(),
                        batch_gt_bboxes[i][j][2].item(),
                        batch_gt_bboxes[i][j][3].item(),
                        batch_gt_labels[i][j].item(), 1.0
                    ])

            batch_pred_bboxes.append(object_list)
        return batch_pred_bboxes

    def __get_object_list(self, batch_detections):
        batch_pred_bboxes = list()
        for idx, detections in enumerate(batch_detections):
            object_list = list()
            if detections is not None:
                for x1, y1, x2, y2, conf, cls_pred in detections:
                    xmin = x1.cpu().item()
                    ymin = y1.cpu().item()
                    xmax = x2.cpu().item()
                    ymax = y2.cpu().item()
                    cf = conf.cpu().item()
                    cls_pred = cls_pred.cpu().item() - 1
                    object_list.append([
                        xmin, ymin, xmax, ymax,
                        int(cls_pred),
                        float('%.2f' % cf)
                    ])

            batch_pred_bboxes.append(object_list)

        return batch_pred_bboxes

    def train(self):
        cudnn.benchmark = True
        if self.configer.get('network',
                             'resume') is not None and self.configer.get(
                                 'network', 'resume_val'):
            self.__val()

        while self.configer.get('epoch') < self.configer.get(
                'solver', 'max_epoch'):
            self.__train()
            if self.configer.get('epoch') == self.configer.get(
                    'solver', 'max_epoch'):
                break
示例#7
0
class SingleShotDetector(object):
    """
      The class for Single Shot Detector. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.det_visualizer = DetVisualizer(configer)
        self.det_loss_manager = DetLossManager(configer)
        self.det_model_manager = DetModelManager(configer)
        self.det_data_loader = DetDataLoader(configer)
        self.module_utilizer = ModuleUtilizer(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.det_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

    def init_model(self):
        self.det_net = self.det_model_manager.object_detector()
        self.det_net = self.module_utilizer.load_net(self.det_net)

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            self._get_parameters())

        self.train_loader = self.det_data_loader.get_trainloader()
        self.val_loader = self.det_data_loader.get_valloader()

        self.det_loss = self.det_loss_manager.get_det_loss('multibox_loss')

    def _get_parameters(self):

        return self.det_net.parameters()

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        if self.configer.get(
                'network',
                'resume') is not None and self.configer.get('iters') == 0:
            self.__val()

        self.det_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.configer.plus_one('epoch')
        self.scheduler.step(self.configer.get('epoch'))

        # data_tuple: (inputs, heatmap, maskmap, vecmap)
        for i, (inputs, bboxes, labels) in enumerate(self.train_loader):
            self.data_time.update(time.time() - start_time)
            # Change the data type.
            inputs, bboxes, labels = self.module_utilizer.to_device(
                inputs, bboxes, labels)

            # Forward pass.
            loc, cls = self.det_net(inputs)

            # Compute the loss of the train batch & backward.
            loss = self.det_loss(loc, bboxes, cls, labels)

            self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.scheduler.get_lr(),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            # Check to val the current model.
            if self.val_loader is not None and \
               (self.configer.get('iters')) % self.configer.get('solver', 'test_interval') == 0:
                self.__val()

    def __val(self):
        """
          Validation function during the train phase.
        """
        self.det_net.eval()
        start_time = time.time()
        with torch.no_grad():
            for j, (inputs, bboxes, labels) in enumerate(self.val_loader):
                # Change the data type.
                inputs, bboxes, labels = self.module_utilizer.to_device(
                    inputs, bboxes, labels)

                # Forward pass.
                loc, cls = self.det_net(inputs)
                # Compute the loss of the val batch.
                loss = self.det_loss(loc, bboxes, cls, labels)

                self.val_losses.update(loss.item(), inputs.size(0))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.module_utilizer.save_net(self.det_net, metric='iters')
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            self.batch_time.reset()
            self.val_losses.reset()
            self.det_net.train()

    def train(self):
        cudnn.benchmark = True
        while self.configer.get('epoch') < self.configer.get(
                'solver', 'max_epoch'):
            self.__train()
            if self.configer.get('epoch') == self.configer.get(
                    'solver', 'max_epoch'):
                break