示例#1
0
class Trainer(object):
    """
      The class for Pose Estimation. Include train, val, val & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.seg_running_score = SegRunningScore(configer)
        self.seg_visualizer = SegVisualizer(configer)
        self.seg_loss_manager = LossManager(configer)
        self.module_runner = ModuleRunner(configer)
        self.seg_model_manager = ModelManager(configer)
        self.seg_data_loader = DataLoader(configer)
        self.optim_scheduler = OptimScheduler(configer)

        self.seg_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None

        self._init_model()

    def _init_model(self):
        self.seg_net = self.seg_model_manager.semantic_segmentor()
        self.seg_net = self.module_runner.load_net(self.seg_net)

        Log.info('Params Group Method: {}'.format(
            self.configer.get('optim', 'group_method')))
        if self.configer.get('optim', 'group_method') == 'decay':
            params_group = self.group_weight(self.seg_net)
        else:
            assert self.configer.get('optim', 'group_method') is None
            params_group = self._get_parameters()

        self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer(
            params_group)

        self.train_loader = self.seg_data_loader.get_trainloader()
        self.val_loader = self.seg_data_loader.get_valloader()

        self.pixel_loss = self.seg_loss_manager.get_seg_loss()

    @staticmethod
    def group_weight(module):
        group_decay = []
        group_no_decay = []
        for m in module.modules():
            if isinstance(m, nn.Linear):
                group_decay.append(m.weight)
                if m.bias is not None:
                    group_no_decay.append(m.bias)
            elif isinstance(m, nn.modules.conv._ConvNd):
                group_decay.append(m.weight)
                if m.bias is not None:
                    group_no_decay.append(m.bias)
            else:
                if hasattr(m, 'weight'):
                    group_no_decay.append(m.weight)
                if hasattr(m, 'bias'):
                    group_no_decay.append(m.bias)

        assert len(list(
            module.parameters())) == len(group_decay) + len(group_no_decay)
        groups = [
            dict(params=group_decay),
            dict(params=group_no_decay, weight_decay=.0)
        ]
        return groups

    def _get_parameters(self):
        bb_lr = []
        nbb_lr = []
        params_dict = dict(self.seg_net.named_parameters())
        for key, value in params_dict.items():
            if 'backbone' not in key:
                nbb_lr.append(value)
            else:
                bb_lr.append(value)

        params = [{
            'params': bb_lr,
            'lr': self.configer.get('lr', 'base_lr')
        }, {
            'params':
            nbb_lr,
            'lr':
            self.configer.get('lr', 'base_lr') *
            self.configer.get('lr', 'nbb_mult')
        }]
        return params

    def __train(self):
        """
          Train function of every epoch during train phase.
        """
        self.seg_net.train()
        start_time = time.time()

        for i, data_dict in enumerate(self.train_loader):
            if self.configer.get('lr', 'metric') == 'iters':
                self.scheduler.step(self.configer.get('iters'))
            else:
                self.scheduler.step(self.configer.get('epoch'))

            if self.configer.get('lr', 'is_warm'):
                self.module_runner.warm_lr(self.configer.get('iters'),
                                           self.scheduler,
                                           self.optimizer,
                                           backbone_list=[
                                               0,
                                           ])
            inputs = data_dict['img']
            targets = data_dict['labelmap']
            self.data_time.update(time.time() - start_time)
            # Change the data type.
            # inputs, targets = self.module_runner.to_device(inputs, targets)

            # Forward pass.
            outputs = self.seg_net(inputs)
            # outputs = self.module_utilizer.gather(outputs)
            # Compute the loss of the train batch & backward.
            loss = self.pixel_loss(outputs,
                                   targets,
                                   gathered=self.configer.get(
                                       'network', 'gathered'))
            if self.configer.exists('train', 'loader') and self.configer.get(
                    'train', 'loader') == 'rs':
                batch_size = self.configer.get(
                    'train', 'batch_size') * self.configer.get(
                        'train', 'batch_per_gpu')
                self.train_losses.update(loss.item(), batch_size)
            else:
                self.train_losses.update(loss.item(), inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.configer.plus_one('iters')

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.configer.get('epoch'),
                            self.configer.get('iters'),
                            self.configer.get('solver', 'display_iter'),
                            self.module_runner.get_lr(self.optimizer),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.configer.get('iters') == self.configer.get(
                    'solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'test_interval') == 0:
                self.__val()

        self.configer.plus_one('epoch')

    def __val(self, data_loader=None):
        """
          Validation function during the train phase.
        """
        self.seg_net.eval()
        start_time = time.time()

        data_loader = self.val_loader if data_loader is None else data_loader
        for j, data_dict in enumerate(data_loader):
            inputs = data_dict['img']
            targets = data_dict['labelmap']

            with torch.no_grad():
                # Change the data type.
                inputs, targets = self.module_runner.to_device(inputs, targets)
                # Forward pass.
                outputs = self.seg_net(inputs)
                # Compute the loss of the val batch.
                loss = self.pixel_loss(outputs,
                                       targets,
                                       gathered=self.configer.get(
                                           'network', 'gathered'))
                outputs = self.module_runner.gather(outputs)

            self.val_losses.update(loss.item(), inputs.size(0))
            self._update_running_score(outputs[-1], data_dict['meta'])
            # self.seg_running_score.update(pred.max(1)[1].cpu().numpy(), targets.cpu().numpy())

            # Update the vars of the val phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()

        self.configer.update(['performance'],
                             self.seg_running_score.get_mean_iou())
        self.configer.update(['val_loss'], self.val_losses.avg)
        self.module_runner.save_net(self.seg_net, save_mode='performance')
        self.module_runner.save_net(self.seg_net, save_mode='val_loss')

        # Print the log info & reset the states.
        Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                                loss=self.val_losses))
        Log.info('Mean IOU: {}\n'.format(
            self.seg_running_score.get_mean_iou()))
        Log.info('Pixel ACC: {}\n'.format(
            self.seg_running_score.get_pixel_acc()))
        self.batch_time.reset()
        self.val_losses.reset()
        self.seg_running_score.reset()
        self.seg_net.train()

    def _update_running_score(self, pred, metas):
        pred = pred.permute(0, 2, 3, 1)
        for i in range(pred.size(0)):
            ori_img_size = metas[i]['ori_img_size']
            border_size = metas[i]['border_size']
            ori_target = metas[i]['ori_target']
            total_logits = cv2.resize(
                pred[i, :border_size[1], :border_size[0]].cpu().numpy(),
                tuple(ori_img_size),
                interpolation=cv2.INTER_CUBIC)
            labelmap = np.argmax(total_logits, axis=-1)
            self.seg_running_score.update(labelmap[None], ori_target[None])

    def train(self):
        # cudnn.benchmark = True
        if self.configer.get('network',
                             'resume') is not None and self.configer.get(
                                 'network', 'resume_val'):
            self.__val()

        while self.configer.get('iters') < self.configer.get(
                'solver', 'max_iters'):
            self.__train()

        self.__val(data_loader=self.seg_data_loader.get_valloader(
            dataset='val'))
        self.__val(data_loader=self.seg_data_loader.get_valloader(
            dataset='train'))
示例#2
0
class FCNSegmentor(object):
    """
      The class for Pose Estimation. Include train, val, val & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.seg_running_score = SegRunningScore(configer)
        self.seg_visualizer = SegVisualizer(configer)
        self.seg_loss_manager = LossManager(configer)
        self.seg_model_manager = SegModelManager(configer)
        self.seg_data_loader = DataLoader(configer)

        self.seg_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
        self.runner_state = dict()

        self._init_model()

    def _init_model(self):
        self.seg_net = self.seg_model_manager.semantic_segmentor()
        self.seg_net = RunnerHelper.load_net(self, self.seg_net)

        self.optimizer, self.scheduler = Trainer.init(self,
                                                      self._get_parameters())

        self.train_loader = self.seg_data_loader.get_trainloader()
        self.val_loader = self.seg_data_loader.get_valloader()

        self.pixel_loss = self.seg_loss_manager.get_seg_loss()

    def _get_parameters(self):
        lr_1 = []
        lr_10 = []
        params_dict = dict(self.seg_net.named_parameters())
        for key, value in params_dict.items():
            if 'backbone' not in key:
                lr_10.append(value)
            else:
                lr_1.append(value)

        params = [{
            'params': lr_1,
            'lr': self.configer.get('lr', 'base_lr')
        }, {
            'params': lr_10,
            'lr': self.configer.get('lr', 'base_lr') * 1.0
        }]
        return params

    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.seg_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.

        for i, data_dict in enumerate(self.train_loader):
            Trainer.update(self, backbone_list=(0, ))
            inputs = data_dict['img']
            targets = data_dict['labelmap']
            self.data_time.update(time.time() - start_time)
            # Change the data type.

            inputs, targets = RunnerHelper.to_device(self, inputs, targets)

            # Forward pass.
            outputs = self.seg_net(inputs)
            # outputs = self.module_utilizer.gather(outputs)
            # Compute the loss of the train batch & backward.
            loss = self.pixel_loss(outputs,
                                   targets,
                                   gathered=self.configer.get(
                                       'network', 'gathered'))
            self.train_losses.update(loss.item(), inputs.size(0))
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.configer.get('iters') % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.runner_state['epoch'],
                            self.runner_state['iters'],
                            self.configer.get('solver', 'display_iter'),
                            RunnerHelper.get_lr(self.optimizer),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.configer.get('lr', 'metric') == 'iters' \
                    and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'test_interval') == 0:
                self.val()

        self.runner_state['epoch'] += 1

    def val(self, data_loader=None):
        """
          Validation function during the train phase.
        """
        self.seg_net.eval()
        start_time = time.time()

        data_loader = self.val_loader if data_loader is None else data_loader
        for j, data_dict in enumerate(data_loader):
            inputs = data_dict['img']
            targets = data_dict['labelmap']

            with torch.no_grad():
                # Change the data type.
                inputs, targets = RunnerHelper.to_device(self, inputs, targets)
                # Forward pass.
                outputs = self.seg_net(inputs)
                # Compute the loss of the val batch.
                loss = self.pixel_loss(outputs,
                                       targets,
                                       gathered=self.configer.get(
                                           'network', 'gathered'))
                outputs = RunnerHelper.gather(self, outputs)

            self.val_losses.update(loss.item(), inputs.size(0))
            self._update_running_score(outputs[-1], data_dict['meta'])

            # Update the vars of the val phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()

        self.runner_state['performance'] = self.seg_running_score.get_mean_iou(
        )
        self.runner_state['val_loss'] = self.val_losses.avg
        RunnerHelper.save_net(
            self,
            self.seg_net,
            performance=self.seg_running_score.get_mean_iou(),
            val_loss=self.val_losses.avg)

        # Print the log info & reset the states.
        Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                                loss=self.val_losses))
        Log.info('Mean IOU: {}\n'.format(
            self.seg_running_score.get_mean_iou()))
        Log.info('Pixel ACC: {}\n'.format(
            self.seg_running_score.get_pixel_acc()))
        self.batch_time.reset()
        self.val_losses.reset()
        self.seg_running_score.reset()
        self.seg_net.train()

    def _update_running_score(self, pred, metas):
        pred = pred.permute(0, 2, 3, 1)
        for i in range(pred.size(0)):
            ori_img_size = metas[i]['ori_img_size']
            border_size = metas[i]['border_size']
            ori_target = metas[i]['ori_target']
            total_logits = cv2.resize(
                pred[i, :border_size[1], :border_size[0]].cpu().numpy(),
                tuple(ori_img_size),
                interpolation=cv2.INTER_CUBIC)
            labelmap = np.argmax(total_logits, axis=-1)
            self.seg_running_score.update(labelmap[None], ori_target[None])