class Trainer(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = LossManager(configer) self.module_runner = ModuleRunner(configer) self.seg_model_manager = ModelManager(configer) self.seg_data_loader = DataLoader(configer) self.optim_scheduler = OptimScheduler(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model() def _init_model(self): self.seg_net = self.seg_model_manager.semantic_segmentor() self.seg_net = self.module_runner.load_net(self.seg_net) Log.info('Params Group Method: {}'.format( self.configer.get('optim', 'group_method'))) if self.configer.get('optim', 'group_method') == 'decay': params_group = self.group_weight(self.seg_net) else: assert self.configer.get('optim', 'group_method') is None params_group = self._get_parameters() self.optimizer, self.scheduler = self.optim_scheduler.init_optimizer( params_group) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() self.pixel_loss = self.seg_loss_manager.get_seg_loss() @staticmethod def group_weight(module): group_decay = [] group_no_decay = [] for m in module.modules(): if isinstance(m, nn.Linear): group_decay.append(m.weight) if m.bias is not None: group_no_decay.append(m.bias) elif isinstance(m, nn.modules.conv._ConvNd): group_decay.append(m.weight) if m.bias is not None: group_no_decay.append(m.bias) else: if hasattr(m, 'weight'): group_no_decay.append(m.weight) if hasattr(m, 'bias'): group_no_decay.append(m.bias) assert len(list( module.parameters())) == len(group_decay) + len(group_no_decay) groups = [ dict(params=group_decay), dict(params=group_no_decay, weight_decay=.0) ] return groups def _get_parameters(self): bb_lr = [] nbb_lr = [] params_dict = dict(self.seg_net.named_parameters()) for key, value in params_dict.items(): if 'backbone' not in key: nbb_lr.append(value) else: bb_lr.append(value) params = [{ 'params': bb_lr, 'lr': self.configer.get('lr', 'base_lr') }, { 'params': nbb_lr, 'lr': self.configer.get('lr', 'base_lr') * self.configer.get('lr', 'nbb_mult') }] return params def __train(self): """ Train function of every epoch during train phase. """ self.seg_net.train() start_time = time.time() for i, data_dict in enumerate(self.train_loader): if self.configer.get('lr', 'metric') == 'iters': self.scheduler.step(self.configer.get('iters')) else: self.scheduler.step(self.configer.get('epoch')) if self.configer.get('lr', 'is_warm'): self.module_runner.warm_lr(self.configer.get('iters'), self.scheduler, self.optimizer, backbone_list=[ 0, ]) inputs = data_dict['img'] targets = data_dict['labelmap'] self.data_time.update(time.time() - start_time) # Change the data type. # inputs, targets = self.module_runner.to_device(inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # outputs = self.module_utilizer.gather(outputs) # Compute the loss of the train batch & backward. loss = self.pixel_loss(outputs, targets, gathered=self.configer.get( 'network', 'gathered')) if self.configer.exists('train', 'loader') and self.configer.get( 'train', 'loader') == 'rs': batch_size = self.configer.get( 'train', 'batch_size') * self.configer.get( 'train', 'batch_per_gpu') self.train_losses.update(loss.item(), batch_size) else: self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.plus_one('iters') # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.configer.get('epoch'), self.configer.get('iters'), self.configer.get('solver', 'display_iter'), self.module_runner.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('iters') == self.configer.get( 'solver', 'max_iters'): break # Check to val the current model. if self.configer.get('iters') % self.configer.get( 'solver', 'test_interval') == 0: self.__val() self.configer.plus_one('epoch') def __val(self, data_loader=None): """ Validation function during the train phase. """ self.seg_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): inputs = data_dict['img'] targets = data_dict['labelmap'] with torch.no_grad(): # Change the data type. inputs, targets = self.module_runner.to_device(inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the val batch. loss = self.pixel_loss(outputs, targets, gathered=self.configer.get( 'network', 'gathered')) outputs = self.module_runner.gather(outputs) self.val_losses.update(loss.item(), inputs.size(0)) self._update_running_score(outputs[-1], data_dict['meta']) # self.seg_running_score.update(pred.max(1)[1].cpu().numpy(), targets.cpu().numpy()) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.configer.update(['performance'], self.seg_running_score.get_mean_iou()) self.configer.update(['val_loss'], self.val_losses.avg) self.module_runner.save_net(self.seg_net, save_mode='performance') self.module_runner.save_net(self.seg_net, save_mode='val_loss') # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) Log.info('Mean IOU: {}\n'.format( self.seg_running_score.get_mean_iou())) Log.info('Pixel ACC: {}\n'.format( self.seg_running_score.get_pixel_acc())) self.batch_time.reset() self.val_losses.reset() self.seg_running_score.reset() self.seg_net.train() def _update_running_score(self, pred, metas): pred = pred.permute(0, 2, 3, 1) for i in range(pred.size(0)): ori_img_size = metas[i]['ori_img_size'] border_size = metas[i]['border_size'] ori_target = metas[i]['ori_target'] total_logits = cv2.resize( pred[i, :border_size[1], :border_size[0]].cpu().numpy(), tuple(ori_img_size), interpolation=cv2.INTER_CUBIC) labelmap = np.argmax(total_logits, axis=-1) self.seg_running_score.update(labelmap[None], ori_target[None]) def train(self): # cudnn.benchmark = True if self.configer.get('network', 'resume') is not None and self.configer.get( 'network', 'resume_val'): self.__val() while self.configer.get('iters') < self.configer.get( 'solver', 'max_iters'): self.__train() self.__val(data_loader=self.seg_data_loader.get_valloader( dataset='val')) self.__val(data_loader=self.seg_data_loader.get_valloader( dataset='train'))
class FCNSegmentor(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = LossManager(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = DataLoader(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.seg_net = self.seg_model_manager.semantic_segmentor() self.seg_net = RunnerHelper.load_net(self, self.seg_net) self.optimizer, self.scheduler = Trainer.init(self, self._get_parameters()) self.train_loader = self.seg_data_loader.get_trainloader() self.val_loader = self.seg_data_loader.get_valloader() self.pixel_loss = self.seg_loss_manager.get_seg_loss() def _get_parameters(self): lr_1 = [] lr_10 = [] params_dict = dict(self.seg_net.named_parameters()) for key, value in params_dict.items(): if 'backbone' not in key: lr_10.append(value) else: lr_1.append(value) params = [{ 'params': lr_1, 'lr': self.configer.get('lr', 'base_lr') }, { 'params': lr_10, 'lr': self.configer.get('lr', 'base_lr') * 1.0 }] return params def train(self): """ Train function of every epoch during train phase. """ self.seg_net.train() start_time = time.time() # Adjust the learning rate after every epoch. for i, data_dict in enumerate(self.train_loader): Trainer.update(self, backbone_list=(0, )) inputs = data_dict['img'] targets = data_dict['labelmap'] self.data_time.update(time.time() - start_time) # Change the data type. inputs, targets = RunnerHelper.to_device(self, inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # outputs = self.module_utilizer.gather(outputs) # Compute the loss of the train batch & backward. loss = self.pixel_loss(outputs, targets, gathered=self.configer.get( 'network', 'gathered')) self.train_losses.update(loss.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.configer.get('iters') % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('lr', 'metric') == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get( 'solver', 'test_interval') == 0: self.val() self.runner_state['epoch'] += 1 def val(self, data_loader=None): """ Validation function during the train phase. """ self.seg_net.eval() start_time = time.time() data_loader = self.val_loader if data_loader is None else data_loader for j, data_dict in enumerate(data_loader): inputs = data_dict['img'] targets = data_dict['labelmap'] with torch.no_grad(): # Change the data type. inputs, targets = RunnerHelper.to_device(self, inputs, targets) # Forward pass. outputs = self.seg_net(inputs) # Compute the loss of the val batch. loss = self.pixel_loss(outputs, targets, gathered=self.configer.get( 'network', 'gathered')) outputs = RunnerHelper.gather(self, outputs) self.val_losses.update(loss.item(), inputs.size(0)) self._update_running_score(outputs[-1], data_dict['meta']) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['performance'] = self.seg_running_score.get_mean_iou( ) self.runner_state['val_loss'] = self.val_losses.avg RunnerHelper.save_net( self, self.seg_net, performance=self.seg_running_score.get_mean_iou(), val_loss=self.val_losses.avg) # Print the log info & reset the states. Log.info('Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) Log.info('Mean IOU: {}\n'.format( self.seg_running_score.get_mean_iou())) Log.info('Pixel ACC: {}\n'.format( self.seg_running_score.get_pixel_acc())) self.batch_time.reset() self.val_losses.reset() self.seg_running_score.reset() self.seg_net.train() def _update_running_score(self, pred, metas): pred = pred.permute(0, 2, 3, 1) for i in range(pred.size(0)): ori_img_size = metas[i]['ori_img_size'] border_size = metas[i]['border_size'] ori_target = metas[i]['ori_target'] total_logits = cv2.resize( pred[i, :border_size[1], :border_size[0]].cpu().numpy(), tuple(ori_img_size), interpolation=cv2.INTER_CUBIC) labelmap = np.argmax(total_logits, axis=-1) self.seg_running_score.update(labelmap[None], ori_target[None])