示例#1
0
def train(args, model, ad_net, random_layer, train_loader, train_loader1,
          optimizer, optimizer_ad, epoch, start_epoch, method):
    model.train()
    len_source = len(train_loader)
    len_target = len(train_loader1)
    if len_source > len_target:
        num_iter = len_source
    else:
        num_iter = len_target

    for batch_idx in range(num_iter):
        if batch_idx % len_source == 0:
            iter_source = iter(train_loader)
        if batch_idx % len_target == 0:
            iter_target = iter(train_loader1)
        data_source, label_source = iter_source.next()
        data_source, label_source = data_source.cuda(), label_source.cuda()
        data_target, label_target = iter_target.next()
        data_target = data_target.cuda()
        print('data_source:', data_source.shape, data_target.shape)

        optimizer.zero_grad()
        optimizer_ad.zero_grad()
        feature, output = model(torch.cat((data_source, data_target), 0))
        loss = nn.CrossEntropyLoss()(output.narrow(0, 0, data_source.size(0)),
                                     label_source)
        softmax_output = nn.Softmax(dim=1)(output)
        if epoch > start_epoch:
            if method == 'CDAN-E':
                entropy = loss_func.Entropy(softmax_output)
                loss += loss_func.CDAN(
                    [feature, softmax_output], ad_net, entropy,
                    network.calc_coeff(num_iter * (epoch - start_epoch) +
                                       batch_idx), random_layer)
            elif method == 'CDAN':
                loss += loss_func.CDAN([feature, softmax_output], ad_net, None,
                                       None, random_layer)
            elif method == 'DANN':
                loss += loss_func.DANN(feature, ad_net)
            else:
                raise ValueError('Method cannot be recognized.')
        loss.backward()
        optimizer.step()
        if epoch > start_epoch:
            optimizer_ad.step()
        if (batch_idx + epoch * num_iter) % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * args.batch_size, num_iter * args.batch_size,
                100. * batch_idx / num_iter, loss.item()))
示例#2
0
def train(config):
    ## set pre-process
    prep_dict = {}
    prep_config = config["prep"]
    prep_dict["source"] = prep.image_train(**config["prep"]['params'])
    prep_dict["target"] = prep.image_train(**config["prep"]['params'])
    if prep_config["test_10crop"]:
        prep_dict["test"] = prep.image_test_10crop(**config["prep"]['params'])
    else:
        prep_dict["test"] = prep.image_test(**config["prep"]['params'])

    ## prepare data
    dsets = {}
    dset_loaders = {}
    data_config = config["data"]
    train_bs = data_config["source"]["batch_size"]
    test_bs = data_config["test"]["batch_size"]
    dsets["source"] = ImageList(open(data_config["source"]["list_path"]).readlines(), \
                                transform=prep_dict["source"])
    dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, \
                                        shuffle=True, num_workers=0, drop_last=True)
    dsets["target"] = ImageList(open(data_config["target"]["list_path"]).readlines(), \
                                transform=prep_dict["target"])
    dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
                                        shuffle=True, num_workers=0, drop_last=True)

    if prep_config["test_10crop"]:
        for i in range(10):
            dsets["test"] = [ImageList(open(data_config["test"]["list_path"]).readlines(), \
                                       transform=prep_dict["test"][i]) for i in range(10)]
            dset_loaders["test"] = [DataLoader(dset, batch_size=test_bs, \
                                               shuffle=False, num_workers=0) for dset in dsets['test']]
    else:
        dsets["test"] = ImageList(open(data_config["test"]["list_path"]).readlines(), \
                                  transform=prep_dict["test"])
        dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, \
                                          shuffle=False, num_workers=0)

    class_num = config["network"]["params"]["class_num"]

    ## set base network
    net_config = config["network"]
    base_network = net_config["name"](**net_config["params"])
    # base_network = base_network.cuda()

    ## 添加判别器D_s,D_t,生成器G_s2t,G_t2s

    z_dimension = 256
    D_s = network.models["Discriminator"]()
    # D_s = D_s.cuda()
    G_s2t = network.models["Generator"](z_dimension, 1024)
    # G_s2t = G_s2t.cuda()

    D_t = network.models["Discriminator"]()
    # D_t = D_t.cuda()
    G_t2s = network.models["Generator"](z_dimension, 1024)
    # G_t2s = G_t2s.cuda()

    criterion_GAN = torch.nn.MSELoss()
    criterion_cycle = torch.nn.L1Loss()
    criterion_identity = torch.nn.L1Loss()
    criterion_Sem = torch.nn.L1Loss()

    optimizer_G = torch.optim.Adam(itertools.chain(G_s2t.parameters(), G_t2s.parameters()), lr=0.0003)
    optimizer_D_s = torch.optim.Adam(D_s.parameters(), lr=0.0003)
    optimizer_D_t = torch.optim.Adam(D_t.parameters(), lr=0.0003)

    fake_S_buffer = ReplayBuffer()
    fake_T_buffer = ReplayBuffer()

    classifier_optimizer = torch.optim.Adam(base_network.parameters(), lr=0.0003)
    ## 添加分类器
    classifier1 = net.Net(256,class_num)
    # classifier1 = classifier1.cuda()
    classifier1_optim = optim.Adam(classifier1.parameters(), lr=0.0003)

    ## add additional network for some methods
    if config["loss"]["random"]:
        random_layer = network.RandomLayer([base_network.output_num(), class_num], config["loss"]["random_dim"])
        ad_net = network.AdversarialNetwork(config["loss"]["random_dim"], 1024)
    else:
        random_layer = None
        ad_net = network.AdversarialNetwork(base_network.output_num() * class_num, 1024)
    if config["loss"]["random"]:
        random_layer.cuda()
    # ad_net = ad_net.cuda()
    parameter_list = base_network.get_parameters() + ad_net.get_parameters()

    ## set optimizer
    optimizer_config = config["optimizer"]
    optimizer = optimizer_config["type"](parameter_list, \
                                         **(optimizer_config["optim_params"]))
    param_lr = []
    for param_group in optimizer.param_groups:
        param_lr.append(param_group["lr"])
    schedule_param = optimizer_config["lr_param"]
    lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]

    gpus = config['gpu'].split(',')
    if len(gpus) > 1:
        ad_net = nn.DataParallel(ad_net, device_ids=[int(i) for i in gpus])
        base_network = nn.DataParallel(base_network, device_ids=[int(i) for i in gpus])

    ## train
    len_train_source = len(dset_loaders["source"])
    len_train_target = len(dset_loaders["target"])
    transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
    best_acc = 0.0
    for i in range(config["num_iterations"]):
        if i % config["test_interval"] == config["test_interval"] - 1:
            base_network.train(False)
            temp_acc = image_classification_test(dset_loaders, \
                                                 base_network, test_10crop=prep_config["test_10crop"])
            temp_model = nn.Sequential(base_network)
            if temp_acc > best_acc:
                best_acc = temp_acc
                best_model = temp_model

                now = datetime.datetime.now()
                d = str(now.month) + '-' + str(now.day) + ' ' + str(now.hour) + ':' + str(now.minute) + ":" + str(
                    now.second)
                torch.save(best_model, osp.join(config["output_path"],
                                                "{}_to_{}_best_model_acc-{}_{}.pth.tar".format(args.source, args.target,
                                                                                               best_acc, d)))
            log_str = "iter: {:05d}, precision: {:.5f}".format(i, temp_acc)
            config["out_file"].write(log_str + "\n")
            config["out_file"].flush()

            print(log_str)
        if i % config["snapshot_interval"] == 0:
            torch.save(nn.Sequential(base_network), osp.join(config["output_path"], \
                                                             "{}_to_{}_iter_{:05d}_model_{}.pth.tar".format(args.source,
                                                                                                            args.target,
                                                                                                            i, str(
                                                                     datetime.datetime.utcnow()))))
        print("it_train: {:05d} / {:05d} start".format(i, config["num_iterations"]))
        loss_params = config["loss"]
        ## train one iter
        classifier1.train(True)
        base_network.train(True)
        ad_net.train(True)
        optimizer = lr_scheduler(optimizer, i, **schedule_param)
        optimizer.zero_grad()


        if i % len_train_source == 0:
            iter_source = iter(dset_loaders["source"])
        if i % len_train_target == 0:
            iter_target = iter(dset_loaders["target"])
        inputs_source, labels_source = iter_source.next()
        inputs_target, labels_target = iter_target.next()
        # inputs_source, inputs_target, labels_source = inputs_source.cuda(), inputs_target.cuda(), labels_source.cuda()

        # 提取特征
        features_source, outputs_source = base_network(inputs_source)
        features_target, outputs_target = base_network(inputs_target)
        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)
        softmax_out = nn.Softmax(dim=1)(outputs)

        outputs_source1 = classifier1(features_source.detach())
        outputs_target1 = classifier1(features_target.detach())
        outputs1 = torch.cat((outputs_source1,outputs_target1),dim=0)
        softmax_out1 = nn.Softmax(dim=1)(outputs1)

        softmax_out = (1-args.cla_plus_weight)*softmax_out + args.cla_plus_weight*softmax_out1

        if config['method'] == 'CDAN+E':
            entropy = loss.Entropy(softmax_out)
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy, network.calc_coeff(i), random_layer)
        elif config['method'] == 'CDAN':
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, None, None, random_layer)
        elif config['method'] == 'DANN':
            transfer_loss = loss.DANN(features, ad_net)
        else:
            raise ValueError('Method cannot be recognized.')
        classifier_loss = nn.CrossEntropyLoss()(outputs_source, labels_source)

        # Cycle
        num_feature = features_source.size(0)
        # =================train discriminator T
        real_label = Variable(torch.ones(num_feature))
        # real_label = Variable(torch.ones(num_feature)).cuda()
        fake_label = Variable(torch.zeros(num_feature))
        # fake_label = Variable(torch.zeros(num_feature)).cuda()

        # 训练生成器
        optimizer_G.zero_grad()

        # Identity loss
        same_t = G_s2t(features_target.detach())
        loss_identity_t = criterion_identity(same_t, features_target)

        same_s = G_t2s(features_source.detach())
        loss_identity_s = criterion_identity(same_s, features_source)

        # Gan loss
        fake_t = G_s2t(features_source.detach())
        pred_fake = D_t(fake_t)
        loss_G_s2t = criterion_GAN(pred_fake, labels_source.float())

        fake_s = G_t2s(features_target.detach())
        pred_fake = D_s(fake_s)
        loss_G_t2s = criterion_GAN(pred_fake, labels_source.float())

        # cycle loss
        recovered_s = G_t2s(fake_t)
        loss_cycle_sts = criterion_cycle(recovered_s, features_source)

        recovered_t = G_s2t(fake_s)
        loss_cycle_tst = criterion_cycle(recovered_t, features_target)

        # sem loss
        pred_recovered_s = base_network.fc(recovered_s)
        pred_fake_t = base_network.fc(fake_t)
        loss_sem_t2s = criterion_Sem(pred_recovered_s, pred_fake_t)

        pred_recovered_t = base_network.fc(recovered_t)
        pred_fake_s = base_network.fc(fake_s)
        loss_sem_s2t = criterion_Sem(pred_recovered_t, pred_fake_s)

        loss_cycle = loss_cycle_tst + loss_cycle_sts
        weights = args.weight_in_lossG.split(',')
        loss_G = float(weights[0]) * (loss_identity_s + loss_identity_t) + \
                 float(weights[1]) * (loss_G_s2t + loss_G_t2s) + \
                 float(weights[2]) * loss_cycle + \
                 float(weights[3]) * (loss_sem_s2t + loss_sem_t2s)



        # 训练softmax分类器
        outputs_fake = classifier1(fake_t.detach())
        # 分类器优化
        classifier_loss1 = nn.CrossEntropyLoss()(outputs_fake, labels_source)
        classifier1_optim.zero_grad()
        classifier_loss1.backward()
        classifier1_optim.step()

        total_loss = loss_params["trade_off"] * transfer_loss + classifier_loss + args.cyc_loss_weight*loss_G
        total_loss.backward()
        optimizer.step()
        optimizer_G.step()

        ###### Discriminator S ######
        optimizer_D_s.zero_grad()

        # Real loss
        pred_real = D_s(features_source.detach())
        loss_D_real = criterion_GAN(pred_real, real_label)

        # Fake loss
        fake_s = fake_S_buffer.push_and_pop(fake_s)
        pred_fake = D_s(fake_s.detach())
        loss_D_fake = criterion_GAN(pred_fake, fake_label)

        # Total loss
        loss_D_s = loss_D_real + loss_D_fake
        loss_D_s.backward()

        optimizer_D_s.step()
        ###################################

        ###### Discriminator t ######
        optimizer_D_t.zero_grad()

        # Real loss
        pred_real = D_t(features_target.detach())
        loss_D_real = criterion_GAN(pred_real, real_label)

        # Fake loss
        fake_t = fake_T_buffer.push_and_pop(fake_t)
        pred_fake = D_t(fake_t.detach())
        loss_D_fake = criterion_GAN(pred_fake, fake_label)

        # Total loss
        loss_D_t = loss_D_real + loss_D_fake
        loss_D_t.backward()
        optimizer_D_t.step()
        print("it_train: {:05d} / {:05d} over".format(i, config["num_iterations"]))
    now = datetime.datetime.now()
    d = str(now.month)+'-'+str(now.day)+' '+str(now.hour)+':'+str(now.minute)+":"+str(now.second)
    torch.save(best_model, osp.join(config["output_path"],
                                    "{}_to_{}_best_model_acc-{}_{}.pth.tar".format(args.source, args.target,
                                                                            best_acc,d)))
    return best_acc
示例#3
0
def train(config):
    # set pre-process
    prep_config = config["prep"]
    prep_dict = {}
    prep_dict["source"] = prep.image_train(**config["prep"]['params'])
    prep_dict["target"] = prep.image_train(**config["prep"]['params'])
    if prep_config["test_10crop"]:
        prep_dict["test"] = prep.image_test_10crop(**config["prep"]['params'])
    else:
        prep_dict["test"] = prep.image_test(**config["prep"]['params'])

    # prepare data
    dsets = {}
    dset_loaders = {}
    data_config = config["data"]
    train_bs = data_config["source"]["batch_size"]
    test_bs = data_config["test"]["batch_size"]
    dsets["source"] = datasets.ImageFolder(data_config['source']['list_path'], transform=prep_dict["source"])
    dset_loaders['source'] = getdataloader(dsets['source'], batchsize=train_bs, num_workers=4, drop_last=True, weightsampler=True)
    dsets["target"] = datasets.ImageFolder(data_config['target']['list_path'], transform=prep_dict["target"])
    dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs,
                                        shuffle=True, num_workers=4, drop_last=True)

    if prep_config["test_10crop"]:
        for i in range(10):
            dsets["test"] = [datasets.ImageFolder(data_config['test']['list_path'],
                                                  transform=prep_dict["test"][i]) for i in range(10)]
            dset_loaders["test"] = [DataLoader(dset, batch_size=test_bs,
                                               shuffle=False, num_workers=4) for dset in dsets['test']]
    else:
        dsets["test"] = datasets.ImageFolder(data_config['test']['list_path'],
                                             transform=prep_dict["test"])
        dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs,
                                          shuffle=False, num_workers=4)

    class_num = config["network"]["params"]["class_num"]

    # set base network
    net_config = config["network"]
    base_network = net_config["name"](**net_config["params"])
    base_network = base_network.cuda()

    # set test_ad_net
    test_ad_net = network.AdversarialNetwork(base_network.output_num(), 1024, test_ad_net=True)
    test_ad_net = test_ad_net.cuda()

    # add additional network for some methods
    if config['method'] == 'DANN':
        random_layer = None
        ad_net = network.AdversarialNetwork(base_network.output_num(), 1024)
    elif config['method'] == 'MADA':
        random_layer = None
        ad_net = network.AdversarialNetworkClassGroup(base_network.output_num(), 1024, class_num)
    elif config['method'] == 'proposed':
        if config['loss']['random']:
            random_layer = network.RandomLayer([base_network.output_num(), class_num], config['loss']['random_dim'])
            ad_net = network.AdversarialNetwork(config['loss']['random_dim'], 1024)
            ad_net_group = network.AdversarialNetworkGroup(config['loss']['random_dim'], 256, class_num, config['center_threshold'])
        else:
            random_layer = None
            ad_net = network.AdversarialNetwork(base_network.output_num(), 1024)
            ad_net_group = network.AdversarialNetworkGroup(base_network.output_num(), 1024, class_num, config['center_threshold'])
    elif config['method'] == 'base':
        pass
    else:
        if config["loss"]["random"]:
            random_layer = network.RandomLayer([base_network.output_num(), class_num], config["loss"]["random_dim"])
            ad_net = network.AdversarialNetwork(config["loss"]["random_dim"], 1024)
        else:
            random_layer = None
            ad_net = network.AdversarialNetwork(base_network.output_num() * class_num, 1024)
    if config["loss"]["random"] and config['method'] != 'base' and config['method'] != 'DANN' and config['method'] != 'MADA':
        random_layer.cuda()
    if config['method'] != 'base':
        ad_net = ad_net.cuda()
    if config['method'] == 'proposed':
        ad_net_group = ad_net_group.cuda()

    # set parameters
    if config['method'] == 'proposed':
        parameter_list = base_network.get_parameters() + test_ad_net.get_parameters() + ad_net.get_parameters() + ad_net_group.get_parameters()
    elif config['method'] == 'base':
        parameter_list = base_network.get_parameters() + test_ad_net.get_parameters()
    elif config['method'] == 'MADA':
        parameter_list = base_network.get_parameters() + test_ad_net.get_parameters() + ad_net.get_parameters()
    else:
        parameter_list = base_network.get_parameters() + test_ad_net.get_parameters() + ad_net.get_parameters()

    # set optimizer
    optimizer_config = config["optimizer"]
    optimizer = optimizer_config["type"](parameter_list, **(optimizer_config["optim_params"]))
    param_lr = []
    for param_group in optimizer.param_groups:
        param_lr.append(param_group["lr"])
    schedule_param = optimizer_config["lr_param"]
    lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]

    # parallel
    gpus = config['gpu'].split(',')
    if len(gpus) > 1:
        base_network = nn.DataParallel(base_network)
        test_ad_net = nn.DataParallel(test_ad_net)
        if config['method'] == 'DANN':
            ad_net = nn.DataParallel(ad_net)
        elif config['method'] == 'proposed':
            if config['loss']['random']:
                random_layer = nn.DataParallel(random_layer)
                ad_net = nn.DataParallel(ad_net)
                #将ad_net_group设置成并行将会引发error,原因可能是由于ad_net_group的输出不是tensor类型,parallel还不能支持。
                #ad_net_group = nn.DataParallel(ad_net_group)
            else:
                ad_net = nn.DataParallel(ad_net)
                #ad_net_group = nn.DataParallel(ad_net_group)
        elif config['method'] == 'base':
            pass
        else:
            # CDAN+E
            if config["loss"]["random"]:
                random_layer = nn.DataParallel(random_layer)
                ad_net = nn.DataParallel(ad_net)
            # CDAN
            else:
                ad_net = nn.DataParallel(ad_net)

    ## train
    len_train_source = len(dset_loaders["source"])
    len_train_target = len(dset_loaders["target"])
    transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
    best_acc = 0.0
    for i in range(config["num_iterations"]):
        if i % config["test_interval"] == config["test_interval"] - 1:
            base_network.train(False)  # eval() == train(False) is True
            temp_acc = image_classification_test(dset_loaders, base_network, test_10crop=prep_config["test_10crop"])
            temp_model = nn.Sequential(base_network)
            if temp_acc > best_acc:
                best_acc = temp_acc
                best_model = temp_model
            log_str = "iter: {:05d}, precision: {:.5f}".format(i, temp_acc)
            config["out_file"].write(log_str + "\n")
            config["out_file"].flush()
            print(log_str)
        # if i % config["snapshot_interval"] == 0:
        #     torch.save(nn.Sequential(base_network), osp.join(config["output_path"],
        #                                                      "iter_{:05d}_model.pth.tar".format(i)))

        loss_params = config["loss"]
        # train one iter
        base_network.train(True)
        if config['method'] != 'base':
            ad_net.train(True)
        if config['method'] == 'proposed':
            ad_net_group.train(True)
        # lr_scheduler
        optimizer = lr_scheduler(optimizer, i, **schedule_param)
        optimizer.zero_grad()
        if i % len_train_source == 0:
            iter_source = iter(dset_loaders["source"])
        if i % len_train_target == 0:
            iter_target = iter(dset_loaders["target"])
        inputs_source, labels_source = iter_source.next()
        inputs_target, labels_target = iter_target.next()
        inputs_source, inputs_target, labels_source = inputs_source.cuda(), inputs_target.cuda(), labels_source.cuda()
        features_source, outputs_source = base_network(inputs_source)
        features_target, outputs_target = base_network(inputs_target)
        if config['tsne']:
            # feature visualization by using T-SNE
            if i == int(0.98*config['num_iterations']):
                features_source_total = features_source.cpu().detach().numpy()
                features_target_total = features_target.cpu().detach().numpy()
            elif i > int(0.98*config['num_iterations']) and i < int(0.98*config['num_iterations'])+10:
                features_source_total = np.concatenate((features_source_total, features_source.cpu().detach().numpy()))
                features_target_total = np.concatenate((features_target_total, features_target.cpu().detach().numpy()))
            elif i == int(0.98*config['num_iterations'])+10:
                for index in range(config['tsne_num']):
                    features_embeded = TSNE(perplexity=10,n_iter=5000).fit_transform(np.concatenate((features_source_total, features_target_total)))
                    fig = plt.figure()
                    plt.scatter(features_embeded[:len(features_embeded)//2, 0], features_embeded[:len(features_embeded)//2, 1], c='r', s=1)
                    plt.scatter(features_embeded[len(features_embeded)//2:, 0], features_embeded[len(features_embeded)//2:, 1], c='b', s=1)
                    plt.savefig(osp.join(config["output_path"], config['method']+'-'+str(index)+'.png'))
                    plt.close()
            else:
                pass

        assert features_source.size(0) == features_target.size(0), 'The batchsize must be same'
        assert outputs_source.size(0) == outputs_target.size(0), 'The batchsize must be same'
        # source first, target second
        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)

        # output the A_distance
        if i % config["test_interval"] == config["test_interval"] - 1:
            A_distance = cal_A_distance(test_ad_net, features)
            config['A_distance_file'].write(str(A_distance)+'\n')
            config['A_distance_file'].flush()

        softmax_out = nn.Softmax(dim=1)(outputs)
        if config['method'] == 'CDAN+E':
            entropy = loss.Entropy(softmax_out)
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy, network.calc_coeff(i), random_layer)
        elif config['method'] == 'CDAN':
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, None, None, random_layer)
        elif config['method'] == 'DANN':
            transfer_loss = loss.DANN(features, ad_net)
        elif config['method'] == 'MADA':
            transfer_loss = loss.MADA(features, softmax_out, ad_net)
        elif config['method'] == 'proposed':
            entropy = loss.Entropy(softmax_out)
            transfer_loss = loss.proposed([features, outputs], labels_source, ad_net, ad_net_group, entropy,
                                          network.calc_coeff(i), i, random_layer, config['loss']['trade_off23'])
        elif config['method'] == 'base':
            pass
        else:
            raise ValueError('Method cannot be recognized.')
        test_domain_loss = loss.DANN(features.clone().detach(), test_ad_net)
        classifier_loss = nn.CrossEntropyLoss()(outputs_source, labels_source)
        if config['method'] == 'base':
            total_loss = classifier_loss + test_domain_loss
        else:
            total_loss = loss_params["trade_off"] * transfer_loss + classifier_loss + test_domain_loss
        total_loss.backward()
        optimizer.step()
    # torch.save(best_model, osp.join(config["output_path"], "best_model.pth.tar"))
    return best_acc
示例#4
0
def train(args, model, ad_net, train_loader, train_loader1, optimizer,
          optimizer_ad, epoch, start_epoch, method):
    model.train()
    len_source = len(train_loader)
    len_target = len(train_loader1)
    if len_source > len_target:
        num_iter = len_source
    else:
        num_iter = len_target
    args.log_interval = num_iter
    high = args.trade_off

    loss_value = 0
    loss_target_value = 0
    for batch_idx in tqdm(range(num_iter), total=num_iter):
        if batch_idx % len_source == 0:
            iter_source = iter(train_loader)
        if batch_idx % len_target == 0:
            iter_target = iter(train_loader1)
        data_source, label_source = iter_source.next()
        data_source, label_source = data_source.to(
            network.dev), label_source.to(network.dev)
        data_target, label_target = iter_target.next()
        data_target = data_target.to(network.dev)
        optimizer.zero_grad()
        optimizer_ad.zero_grad()
        features_source, outputs_source = model(data_source)
        features_target, outputs_target = model(data_target)
        feature = torch.cat((features_source, features_target), dim=0)
        output = torch.cat((outputs_source, outputs_target), dim=0)
        classifier_loss = nn.CrossEntropyLoss()(output.narrow(
            0, 0, data_source.size(0)), label_source)
        softmax_output = nn.Softmax(dim=1)(output)
        if epoch > start_epoch:
            if method == 'DANN':
                transfer_loss = loss_func.DANN(feature, ad_net)
            elif method == "ALDA":
                ad_out = ad_net(feature)
                if label_source.size(0) != ad_out.size(0) // 2:
                    continue
                adv_loss, reg_loss, correct_loss = loss_func.ALDA_loss(
                    ad_out,
                    label_source,
                    softmax_output,
                    weight_type=1,
                    threshold=args.threshold)
                # whether add the corrected self-training loss
                if "nocorrect" in args.loss_type:
                    transfer_loss = adv_loss
                else:
                    transfer_loss = adv_loss + correct_loss
                # reg_loss is only backward to the discriminator
                if "noreg" not in args.loss_type:
                    for param in model.parameters():
                        param.requires_grad = False
                    reg_loss.backward(retain_graph=True)
                    for param in model.parameters():
                        param.requires_grad = True
            else:
                raise ValueError('Method cannot be recognized.')
            loss_target_value += transfer_loss.item() / args.log_interval
        else:
            transfer_loss = 0
        loss = classifier_loss + transfer_loss  #loss_func.Square(softmax_output) + transfer_loss
        if math.isnan(loss.item()):
            raise AssertionError
        loss.backward()
        optimizer.step()
        if epoch > start_epoch:
            optimizer_ad.step()
        if batch_idx % args.log_interval == args.log_interval - 1:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * args.batch_size, num_iter * args.batch_size,
                100. * batch_idx / num_iter, loss.item()))
            print("transfer_loss: {:.3f} classifier_loss: {:.3f}".format(
                loss_target_value, loss_value))
            loss_value = 0
            loss_target_value = 0
示例#5
0
def train(config):
    ## set pre-process
    prep_dict = {}
    prep_config = config["prep"]
    prep_dict["source"] = prep.image_train(**config["prep"]['params'])
    prep_dict["target"] = prep.image_train(**config["prep"]['params'])
    if prep_config["test_10crop"]:
        prep_dict["test"] = prep.image_test_10crop(**config["prep"]['params'])
    else:
        prep_dict["test"] = prep.image_test(**config["prep"]['params'])

    ## prepare data
    dsets = {}
    dset_loaders = {}
    data_config = config["data"]
    train_bs = data_config["source"]["batch_size"]
    test_bs = data_config["test"]["batch_size"]

    source_list = [
        '.' + i for i in open(data_config["source"]["list_path"]).readlines()
    ]
    target_list = [
        '.' + i for i in open(data_config["target"]["list_path"]).readlines()
    ]

    dsets["source"] = ImageList(source_list, \
                                transform=prep_dict["source"])
    dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, \
            shuffle=True, num_workers=config['args'].num_worker, drop_last=True)
    dsets["target"] = ImageList(target_list, \
                                transform=prep_dict["target"])
    dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
            shuffle=True, num_workers=config['args'].num_worker, drop_last=True)
    print("source dataset len:", len(dsets["source"]))
    print("target dataset len:", len(dsets["target"]))

    if prep_config["test_10crop"]:
        for i in range(10):
            test_list = [
                '.' + i
                for i in open(data_config["test"]["list_path"]).readlines()
            ]
            dsets["test"] = [ImageList(test_list, \
                                transform=prep_dict["test"][i]) for i in range(10)]
            dset_loaders["test"] = [DataLoader(dset, batch_size=test_bs, \
                                shuffle=False, num_workers=config['args'].num_worker) for dset in dsets['test']]
    else:
        test_list = [
            '.' + i
            for i in open(data_config["test"]["list_path"]).readlines()
        ]
        dsets["test"] = ImageList(test_list, \
                                transform=prep_dict["test"])
        dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, \
                                shuffle=False, num_workers=config['args'].num_worker)

    dsets["target_label"] = ImageList_label(target_list, \
                            transform=prep_dict["target"])
    dset_loaders["target_label"] = DataLoader(dsets["target_label"], batch_size=test_bs, \
            shuffle=False, num_workers=config['args'].num_worker, drop_last=False)

    class_num = config["network"]["params"]["class_num"]

    ## set base network
    net_config = config["network"]
    base_network = net_config["name"](**net_config["params"])
    base_network = base_network.to(network.dev)
    if config["restore_path"]:
        checkpoint = torch.load(
            osp.join(config["restore_path"], "best_model.pth"))["base_network"]
        ckp = {}
        for k, v in checkpoint.items():
            if "module" in k:
                ckp[k.split("module.")[-1]] = v
            else:
                ckp[k] = v
        base_network.load_state_dict(ckp)
        log_str = "successfully restore from {}".format(
            osp.join(config["restore_path"], "best_model.pth"))
        config["out_file"].write(log_str + "\n")
        config["out_file"].flush()
        print(log_str)

    ## add additional network for some methods
    if "ALDA" in args.method:
        ad_net = network.Multi_AdversarialNetwork(base_network.output_num(),
                                                  1024, class_num)
    else:
        ad_net = network.AdversarialNetwork(base_network.output_num(), 1024)
    ad_net = ad_net.to(network.dev)
    parameter_list = base_network.get_parameters() + ad_net.get_parameters()

    ## set optimizer
    optimizer_config = config["optimizer"]
    optimizer = optimizer_config["type"](parameter_list, \
                    **(optimizer_config["optim_params"]))
    param_lr = []
    for param_group in optimizer.param_groups:
        param_lr.append(param_group["lr"])
    schedule_param = optimizer_config["lr_param"]
    lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]

    gpus = config['gpu'].split(',')
    if len(gpus) > 1:
        ad_net = nn.DataParallel(ad_net,
                                 device_ids=[int(i) for i in range(len(gpus))])
        base_network = nn.DataParallel(
            base_network, device_ids=[int(i) for i in range(len(gpus))])

    loss_params = config["loss"]
    high = loss_params["trade_off"]
    begin_label = False
    writer = SummaryWriter(config["output_path"])

    ## train
    len_train_source = len(dset_loaders["source"])
    len_train_target = len(dset_loaders["target"])
    transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
    best_acc = 0.0
    loss_value = 0
    loss_adv_value = 0
    loss_correct_value = 0
    for i in tqdm(range(config["num_iterations"]),
                  total=config["num_iterations"]):
        if i % config["test_interval"] == config["test_interval"] - 1:
            base_network.train(False)
            temp_acc = image_classification_test(dset_loaders, \
                base_network, test_10crop=prep_config["test_10crop"])
            temp_model = base_network  #nn.Sequential(base_network)
            if temp_acc > best_acc:
                best_step = i
                best_acc = temp_acc
                best_model = temp_model
                checkpoint = {
                    "base_network": best_model.state_dict(),
                    "ad_net": ad_net.state_dict()
                }
                torch.save(checkpoint,
                           osp.join(config["output_path"], "best_model.pth"))
                print(
                    "\n##########     save the best model.    #############\n")
            log_str = "iter: {:05d}, precision: {:.5f}".format(i, temp_acc)
            config["out_file"].write(log_str + "\n")
            config["out_file"].flush()
            writer.add_scalar('precision', temp_acc, i)
            print(log_str)

            print("adv_loss: {:.3f} correct_loss: {:.3f} class_loss: {:.3f}".
                  format(loss_adv_value, loss_correct_value, loss_value))
            loss_value = 0
            loss_adv_value = 0
            loss_correct_value = 0

            #show val result on tensorboard
            images_inv = prep.inv_preprocess(inputs_source.clone().cpu(), 3)
            for index, img in enumerate(images_inv):
                writer.add_image(str(index) + '/Images', img, i)

        # save the pseudo_label
        if 'PseudoLabel' in config['method'] and (
                i % config["label_interval"] == config["label_interval"] - 1):
            base_network.train(False)
            pseudo_label_list = image_label(dset_loaders, base_network, threshold=config['threshold'], \
                                out_dir=config["output_path"])
            dsets["target"] = ImageList(open(pseudo_label_list).readlines(), \
                                transform=prep_dict["target"])
            dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
                    shuffle=True, num_workers=config['args'].num_worker, drop_last=True)
            iter_target = iter(
                dset_loaders["target"]
            )  # replace the target dataloader with Pseudo_Label dataloader
            begin_label = True

        if i > config["stop_step"]:
            log_str = "method {}, iter: {:05d}, precision: {:.5f}".format(
                config["output_path"], best_step, best_acc)
            config["final_log"].write(log_str + "\n")
            config["final_log"].flush()
            break

        ## train one iter
        base_network.train(True)
        ad_net.train(True)
        optimizer = lr_scheduler(optimizer, i, **schedule_param)
        optimizer.zero_grad()
        if i % len_train_source == 0:
            iter_source = iter(dset_loaders["source"])
        if i % len_train_target == 0:
            iter_target = iter(dset_loaders["target"])
        inputs_source, labels_source = iter_source.next()
        inputs_target, labels_target = iter_target.next()
        inputs_source, inputs_target, labels_source = Variable(
            inputs_source).to(network.dev), Variable(inputs_target).to(
                network.dev), Variable(labels_source).to(network.dev)
        features_source, outputs_source = base_network(inputs_source)
        if args.source_detach:
            features_source = features_source.detach()
        features_target, outputs_target = base_network(inputs_target)
        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)
        softmax_out = nn.Softmax(dim=1)(outputs)
        loss_params["trade_off"] = network.calc_coeff(
            i, high=high)  #if i > 500 else 0.0
        transfer_loss = 0.0
        if 'DANN' in config['method']:
            transfer_loss = loss.DANN(features, ad_net)
        elif "ALDA" in config['method']:
            ad_out = ad_net(features)
            adv_loss, reg_loss, correct_loss = loss.ALDA_loss(
                ad_out,
                labels_source,
                softmax_out,
                weight_type=config['args'].weight_type,
                threshold=config['threshold'])
            # whether add the corrected self-training loss
            if "nocorrect" in config['args'].loss_type:
                transfer_loss = adv_loss
            else:
                transfer_loss = config['args'].adv_weight * adv_loss + config[
                    'args'].adv_weight * loss_params["trade_off"] * correct_loss
            # reg_loss is only backward to the discriminator
            if "noreg" not in config['args'].loss_type:
                for param in base_network.parameters():
                    param.requires_grad = False
                reg_loss.backward(retain_graph=True)
                for param in base_network.parameters():
                    param.requires_grad = True
        # on-line self-training
        elif 'SelfTraining' in config['method']:
            transfer_loss += loss_params["trade_off"] * loss.SelfTraining_loss(
                outputs, softmax_out, config['threshold'])
        # off-line self-training
        elif 'PseudoLabel' in config['method']:
            labels_target = labels_target.to(network.dev)
            if begin_label:
                transfer_loss += loss_params["trade_off"] * nn.CrossEntropyLoss(
                    ignore_index=-1)(outputs_target, labels_target)
            else:
                transfer_loss += 0.0 * nn.CrossEntropyLoss(ignore_index=-1)(
                    outputs_target, labels_target)

        classifier_loss = nn.CrossEntropyLoss()(outputs_source, labels_source)
        loss_value += classifier_loss.item() / config["test_interval"]
        loss_adv_value += adv_loss.item() / config["test_interval"]
        loss_correct_value += correct_loss.item() / config["test_interval"]
        total_loss = classifier_loss + transfer_loss
        total_loss.backward()
        optimizer.step()
    checkpoint = {
        "base_network": temp_model.state_dict(),
        "ad_net": ad_net.state_dict()
    }
    torch.save(checkpoint, osp.join(config["output_path"], "final_model.pth"))
    return best_acc
示例#6
0
def train(config):
    base_network = network.ResNetFc('ResNet50', use_bottleneck=True, bottleneck_dim=config["bottleneck_dim"], new_cls=True, class_num=config["class_num"])
    ad_net = network.AdversarialNetwork(config["bottleneck_dim"], config["hidden_dim"])

    base_network = base_network.cuda()
    ad_net = ad_net.cuda()

    parameter_list = base_network.get_parameters() + ad_net.get_parameters()

    source_path = ImageList(open(config["s_path"]).readlines(), transform=preprocess.image_train(resize_size=256, crop_size=224))
    target_path = ImageList(open(config["t_path"]).readlines(), transform=preprocess.image_train(resize_size=256, crop_size=224))
    test_path   = ImageList(open(config["t_path"]).readlines(), transform=preprocess.image_test(resize_size=256, crop_size=224))

    source_loader = DataLoader(source_path, batch_size=config["train_bs"], shuffle=True, num_workers=0, drop_last=True)
    target_loader = DataLoader(target_path, batch_size=config["train_bs"], shuffle=True, num_workers=0, drop_last=True)
    test_loader   = DataLoader(test_path, batch_size=config["test_bs"], shuffle=True, num_workers=0, drop_last=True)

    optimizer_config = config["optimizer"]
    optimizer = optimizer_config["type"](parameter_list, \
                    **(optimizer_config["optim_params"]))
    param_lr = []
    for param_group in optimizer.param_groups:
        param_lr.append(param_group["lr"])
    schedule_param = optimizer_config["lr_param"]
    lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]

    gpus = config["gpus"].split(',')
    if len(gpus) > 1:
        ad_net = nn.DataParallel(ad_net, device_ids=[int(i) for i in gpus])
        base_network = nn.DataParallel(base_network, device_ids=[int(i) for i in gpus])


    len_train_source = len(source_loader)
    len_train_target = len(target_loader)

    transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
    best_acc = 0.0
    best_model_path = None

    for i in trange(config["iterations"], leave=False):
        if i % config["test_interval"] == config["test_interval"] - 1:
            base_network.train(False)
            temp_acc = image_classification_test(test_loader, base_network)
            temp_model = nn.Sequential(base_network)
            if temp_acc > best_acc:
                best_acc = temp_acc
                best_model = copy.deepcopy(temp_model)
                best_iter = i
                if best_model_path and osp.exists(best_model_path):
                    try:
                        os.remove(best_model_path)
                    except:
                        pass
                best_model_path = osp.join(config["output_path"], "iter_{:05d}.pth.tar".format(best_iter))
                torch.save(best_model, best_model_path)
            log_str = "iter: {:05d}, precision: {:.5f}".format(i, temp_acc)
            config["out_file"].write(log_str+"\n")
            config["out_file"].flush()
            # print("cut_loss: ", cut_loss.item())
            print("mix_loss: ", mix_loss.item())
            print(log_str)

        base_network.train(True)
        ad_net.train(True)
        optimizer = lr_scheduler(optimizer, i, **schedule_param)
        optimizer.zero_grad()
        if i % len_train_source == 0:
            iter_source = iter(source_loader)
        if i % len_train_target == 0:
            iter_target = iter(target_loader)

        inputs_source, labels_source = iter_source.next()
        inputs_target, labels_target = iter_target.next()
        inputs_source, inputs_target, labels_source = inputs_source.cuda(), inputs_target.cuda(), labels_source.cuda()
        labels_src_one_hot = torch.nn.functional.one_hot(labels_source, config["class_num"]).float()

        # inputs_cut, labels_cut = cutmix(base_network, inputs_source, labels_src_one_hot, inputs_target, config["alpha"], config["class_num"])
        inputs_mix, labels_mix = mixup(base_network, inputs_source, labels_src_one_hot, inputs_target, config["alpha"], config["class_num"], config["temperature"])

        features_source, outputs_source = base_network(inputs_source)
        features_target, outputs_target = base_network(inputs_target)
        # features_cut,    outputs_cut    = base_network(inputs_cut)
        features_mix,    outputs_mix    = base_network(inputs_mix)

        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)
        softmax_out = nn.Softmax(dim=1)(outputs)

        if config["method"] == 'DANN':
            transfer_loss = loss.DANN(features, ad_net)
            # cut_loss = utils.kl_loss(outputs_cut, labels_cut.detach())
            mix_loss = utils.kl_loss(outputs_mix, labels_mix.detach())
        else:
            raise ValueError('Method cannot be recognized.')

        classifier_loss = nn.CrossEntropyLoss()(outputs_source, labels_source)
        total_loss = transfer_loss + classifier_loss + (5*mix_loss)
        total_loss.backward()
        optimizer.step()
    torch.save(best_model, osp.join(config["output_path"], "best_model.pth.tar"))
    print("Training Finished! Best Accuracy: ", best_acc)
    return best_acc
示例#7
0
def train(args, validate=False, label=None):
    ## set pre-process
    if validate:
        dset_loaders = data_load_y(args, label)
    else:
        dset_loaders = data_load(args)
    class_num = args.class_num
    class_weight_src = torch.ones(class_num, ).cuda()
    ##################################################################################################

    ## set base network
    if args.net == 'resnet101':
        netG = utils.ResBase101().cuda()
    elif args.net == 'resnet50':
        netG = utils.ResBase50().cuda()

    netF = utils.ResClassifier(class_num=class_num,
                               feature_dim=netG.in_features,
                               bottleneck_dim=args.bottleneck_dim).cuda()

    max_len = max(len(dset_loaders["source"]), len(dset_loaders["target"]))
    args.max_iter = args.max_epoch * max_len

    ad_flag = False
    if args.method in {'DANN', 'DANNE'}:
        ad_net = utils.AdversarialNetwork(args.bottleneck_dim,
                                          1024,
                                          max_iter=args.max_iter).cuda()
        ad_flag = True
    if args.method in {'CDAN', 'CDANE'}:
        ad_net = utils.AdversarialNetwork(args.bottleneck_dim * class_num,
                                          1024,
                                          max_iter=args.max_iter).cuda()
        random_layer = None
        ad_flag = True

    optimizer_g = optim.SGD(netG.parameters(), lr=args.lr * 0.1)
    optimizer_f = optim.SGD(netF.parameters(), lr=args.lr)
    if ad_flag:
        optimizer_d = optim.SGD(ad_net.parameters(), lr=args.lr)

    base_network = nn.Sequential(netG, netF)

    if args.pl.startswith('atdoc_na'):
        mem_fea = torch.rand(len(dset_loaders["target"].dataset),
                             args.bottleneck_dim).cuda()
        mem_fea = mem_fea / torch.norm(mem_fea, p=2, dim=1, keepdim=True)
        mem_cls = torch.ones(len(dset_loaders["target"].dataset),
                             class_num).cuda() / class_num

    if args.pl == 'atdoc_nc':
        mem_fea = torch.rand(args.class_num, args.bottleneck_dim).cuda()
        mem_fea = mem_fea / torch.norm(mem_fea, p=2, dim=1, keepdim=True)

    source_loader_iter = iter(dset_loaders["source"])
    target_loader_iter = iter(dset_loaders["target"])

    ####
    list_acc = []
    best_ent = 100

    for iter_num in range(1, args.max_iter + 1):
        base_network.train()
        lr_scheduler(optimizer_g,
                     init_lr=args.lr * 0.1,
                     iter_num=iter_num,
                     max_iter=args.max_iter)
        lr_scheduler(optimizer_f,
                     init_lr=args.lr,
                     iter_num=iter_num,
                     max_iter=args.max_iter)
        if ad_flag:
            lr_scheduler(optimizer_d,
                         init_lr=args.lr,
                         iter_num=iter_num,
                         max_iter=args.max_iter)

        try:
            inputs_source, labels_source = source_loader_iter.next()
        except:
            source_loader_iter = iter(dset_loaders["source"])
            inputs_source, labels_source = source_loader_iter.next()
        try:
            inputs_target, _, idx = target_loader_iter.next()
        except:
            target_loader_iter = iter(dset_loaders["target"])
            inputs_target, _, idx = target_loader_iter.next()

        inputs_source, inputs_target, labels_source = inputs_source.cuda(
        ), inputs_target.cuda(), labels_source.cuda()

        if args.method == 'srconly' and args.pl == 'none':
            features_source, outputs_source = base_network(inputs_source)
        else:
            features_source, outputs_source = base_network(inputs_source)
            features_target, outputs_target = base_network(inputs_target)
            features = torch.cat((features_source, features_target), dim=0)
            outputs = torch.cat((outputs_source, outputs_target), dim=0)
            softmax_out = nn.Softmax(dim=1)(outputs)

        eff = utils.calc_coeff(iter_num, max_iter=args.max_iter)
        if args.method[-1] == 'E':
            entropy = loss.Entropy(softmax_out)
        else:
            entropy = None

        if args.method in {'CDAN', 'CDANE'}:
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy,
                                      eff, random_layer)

        elif args.method in {'DANN', 'DANNE'}:
            transfer_loss = loss.DANN(features, ad_net, entropy, eff)

        elif args.method == 'DAN':
            transfer_loss = eff * loss.DAN(features_source, features_target)
        elif args.method == 'DAN_Linear':
            transfer_loss = eff * loss.DAN_Linear(features_source,
                                                  features_target)

        elif args.method == 'JAN':
            transfer_loss = eff * loss.JAN(
                [features_source, softmax_out[0:args.batch_size, :]],
                [features_target, softmax_out[args.batch_size::, :]])
        elif args.method == 'JAN_Linear':
            transfer_loss = eff * loss.JAN_Linear(
                [features_source, softmax_out[0:args.batch_size, :]],
                [features_target, softmax_out[args.batch_size::, :]])

        elif args.method == 'CORAL':
            transfer_loss = eff * loss.CORAL(features_source, features_target)
        elif args.method == 'DDC':
            transfer_loss = loss.MMD_loss()(features_source, features_target)

        elif args.method == 'srconly':
            transfer_loss = torch.tensor(0.0).cuda()
        else:
            raise ValueError('Method cannot be recognized.')

        src_ = loss.CrossEntropyLabelSmooth(reduction='none',
                                            num_classes=class_num,
                                            epsilon=args.smooth)(
                                                outputs_source, labels_source)
        weight_src = class_weight_src[labels_source].unsqueeze(0)
        classifier_loss = torch.sum(
            weight_src * src_) / (torch.sum(weight_src).item())
        total_loss = transfer_loss + classifier_loss

        eff = iter_num / args.max_iter

        if args.pl == 'none':
            pass

        elif args.pl == 'square':
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            square_loss = -torch.sqrt((softmax_out**2).sum(dim=1)).mean()
            total_loss += args.tar_par * eff * square_loss

        elif args.pl == 'bsp':
            sigma_loss = bsp_loss(features)
            total_loss += args.tar_par * sigma_loss

        elif args.pl == 'bnm':
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            bnm_loss = -torch.norm(softmax_out, 'nuc')
            cof = torch.tensor(
                np.sqrt(np.min(softmax_out.size())) / softmax_out.size(0))
            bnm_loss *= cof
            total_loss += args.tar_par * eff * bnm_loss

        elif args.pl == "mcc":
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            ent_weight = 1 + torch.exp(-loss.Entropy(softmax_out)).detach()
            ent_weight /= ent_weight.sum()
            cov_tar = softmax_out.t().mm(
                torch.diag(softmax_out.size(0) * ent_weight)).mm(softmax_out)
            mcc_loss = (torch.diag(cov_tar) / cov_tar.sum(dim=1)).mean()
            total_loss -= args.tar_par * eff * mcc_loss

        elif args.pl == 'ent':
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            ent_loss = torch.mean(loss.Entropy(softmax_out))
            ent_loss /= torch.log(torch.tensor(class_num + 0.0))
            total_loss += args.tar_par * eff * ent_loss

        elif args.pl[0:3] == 'npl':
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            softmax_out = softmax_out**2 / ((softmax_out**2).sum(dim=0))

            weight_, pred = torch.max(softmax_out, 1)
            loss_ = nn.CrossEntropyLoss(reduction='none')(outputs_target, pred)
            classifier_loss = torch.sum(
                weight_ * loss_) / (torch.sum(weight_).item())
            total_loss += args.tar_par * eff * classifier_loss

        elif args.pl == 'atdoc_nc':
            mem_fea_norm = mem_fea / torch.norm(
                mem_fea, p=2, dim=1, keepdim=True)
            dis = torch.mm(features_target.detach(), mem_fea_norm.t())
            _, pred = torch.max(dis, dim=1)
            classifier_loss = nn.CrossEntropyLoss()(outputs_target, pred)
            total_loss += args.tar_par * eff * classifier_loss

        elif args.pl.startswith('atdoc_na'):

            dis = -torch.mm(features_target.detach(), mem_fea.t())
            for di in range(dis.size(0)):
                dis[di, idx[di]] = torch.max(dis)
            _, p1 = torch.sort(dis, dim=1)

            w = torch.zeros(features_target.size(0), mem_fea.size(0)).cuda()
            for wi in range(w.size(0)):
                for wj in range(args.K):
                    w[wi][p1[wi, wj]] = 1 / args.K

            weight_, pred = torch.max(w.mm(mem_cls), 1)

            if args.pl == 'atdoc_na_now':
                classifier_loss = nn.CrossEntropyLoss()(outputs_target, pred)
            else:
                loss_ = nn.CrossEntropyLoss(reduction='none')(outputs_target,
                                                              pred)
                classifier_loss = torch.sum(
                    weight_ * loss_) / (torch.sum(weight_).item())
            total_loss += args.tar_par * eff * classifier_loss

        optimizer_g.zero_grad()
        optimizer_f.zero_grad()
        if ad_flag:
            optimizer_d.zero_grad()
        total_loss.backward()
        optimizer_g.step()
        optimizer_f.step()
        if ad_flag:
            optimizer_d.step()

        if args.pl.startswith('atdoc_na'):
            base_network.eval()
            with torch.no_grad():
                features_target, outputs_target = base_network(inputs_target)
                features_target = features_target / torch.norm(
                    features_target, p=2, dim=1, keepdim=True)
                softmax_out = nn.Softmax(dim=1)(outputs_target)
                if args.pl == 'atdoc_na_nos':
                    outputs_target = softmax_out
                else:
                    outputs_target = softmax_out**2 / (
                        (softmax_out**2).sum(dim=0))

            mem_fea[idx] = (1.0 - args.momentum) * mem_fea[
                idx] + args.momentum * features_target.clone()
            mem_cls[idx] = (1.0 - args.momentum) * mem_cls[
                idx] + args.momentum * outputs_target.clone()

        if args.pl == 'atdoc_nc':
            base_network.eval()
            with torch.no_grad():
                features_target, outputs_target = base_network(inputs_target)
                softmax_t = nn.Softmax(dim=1)(outputs_target)
                _, pred_t = torch.max(softmax_t, 1)
                onehot_t = torch.eye(args.class_num)[pred_t].cuda()
                center_t = torch.mm(features_target.t(),
                                    onehot_t) / (onehot_t.sum(dim=0) + 1e-8)

            mem_fea = (1.0 - args.momentum
                       ) * mem_fea + args.momentum * center_t.t().clone()

        if iter_num % int(args.eval_epoch * max_len) == 0:
            base_network.eval()
            if args.dset == 'VISDA-C':
                acc, py, score, y, tacc = utils.cal_acc_visda(
                    dset_loaders["test"], base_network)
                args.out_file.write(tacc + '\n')
                args.out_file.flush()

                _ent = loss.Entropy(score)
                mean_ent = 0
                for ci in range(args.class_num):
                    mean_ent += _ent[py == ci].mean()
                mean_ent /= args.class_num

            else:
                acc, py, score, y = utils.cal_acc(dset_loaders["test"],
                                                  base_network)
                mean_ent = torch.mean(loss.Entropy(score))

            list_acc.append(acc * 100)
            if best_ent > mean_ent:
                best_ent = mean_ent
                val_acc = acc * 100
                best_y = y
                best_py = py
                best_score = score

            log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%; Mean Ent = {:.4f}'.format(
                args.name, iter_num, args.max_iter, acc * 100, mean_ent)
            args.out_file.write(log_str + '\n')
            args.out_file.flush()
            print(log_str + '\n')

    idx = np.argmax(np.array(list_acc))
    max_acc = list_acc[idx]
    final_acc = list_acc[-1]

    log_str = '\n==========================================\n'
    log_str += '\nVal Acc = {:.2f}\nMax Acc = {:.2f}\nFin Acc = {:.2f}\n'.format(
        val_acc, max_acc, final_acc)
    args.out_file.write(log_str + '\n')
    args.out_file.flush()

    # torch.save(base_network.state_dict(), osp.join(args.output_dir, args.log + ".pt"))
    # sio.savemat(osp.join(args.output_dir, args.log + ".mat"), {'y':best_y.cpu().numpy(),
    #     'py':best_py.cpu().numpy(), 'score':best_score.cpu().numpy()})

    return best_y.cpu().numpy().astype(np.int64)
示例#8
0
def train(config):
    print("Deep copy of model with margin as 1.0")
    ## set pre-process
    prep_dict = {}
    prep_config = config["prep"]
    prep_dict["source"] = prep.image_train(**config["prep"]['params'])
    prep_dict["target"] = prep.image_train(**config["prep"]['params'])
    if prep_config["test_10crop"]:
        prep_dict["test"] = prep.image_test_10crop(**config["prep"]['params'])
    else:
        prep_dict["test"] = prep.image_test(**config["prep"]['params'])

    ## prepare data
    dsets = {}
    dset_loaders = {}
    data_config = config["data"]
    train_bs = data_config["source"]["batch_size"]
    test_bs = data_config["test"]["batch_size"]
    dsets["source"] = ImageList(open(data_config["source"]["list_path"]).readlines(), \
                                transform=prep_dict["source"])
    dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, \
            shuffle=True, num_workers=4, drop_last=True)
    dsets["target"] = ImageList(open(data_config["target"]["list_path"]).readlines(), \
                                transform=prep_dict["target"])
    dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
            shuffle=True, num_workers=4, drop_last=True)

    if prep_config["test_10crop"]:
        for i in range(10):
            dsets["test"] = [ImageList(open(data_config["test"]["list_path"]).readlines(), \
                                transform=prep_dict["test"][i]) for i in range(10)]
            dset_loaders["test"] = [DataLoader(dset, batch_size=test_bs, \
                                shuffle=False, num_workers=4) for dset in dsets['test']]
    else:
        dsets["test"] = ImageList(open(data_config["test"]["list_path"]).readlines(), \
                                transform=prep_dict["test"])
        dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, \
                                shuffle=False, num_workers=4)

    class_num = config["network"]["params"]["class_num"]

    ## set base network
    net_config = config["network"]
    base_network = net_config["call"](net_config["name"],
                                      **net_config["params"])
    base_network_teacher = net_config["call"](net_config["name"],
                                              **net_config["params_teacher"])
    base_network = base_network.cuda()
    base_network_teacher = copy.deepcopy(base_network).cuda()
    for param in base_network_teacher.parameters():
        param.detach_()
    # base_network_teacher = base_network_teacher.cuda()

    # print("check init: ", torch.equal(base_network.fc.weight, base_network_teacher.fc.weight))

    base_network.layer1[-1].relu = nn.ReLU()
    base_network.layer2[-1].relu = nn.ReLU()
    base_network.layer3[-1].relu = nn.ReLU()
    base_network.layer4[-1].relu = nn.ReLU()

    base_network_teacher.layer1[-1].relu = nn.ReLU()
    base_network_teacher.layer2[-1].relu = nn.ReLU()
    base_network_teacher.layer3[-1].relu = nn.ReLU()
    base_network_teacher.layer4[-1].relu = nn.ReLU()

    # print(base_network)

    for n, m in base_network.named_modules():
        if n == 'layer1.2.bn3' or 'layer2.3.bn3' or 'layer3.5.bn3' or 'layer4.2.bn3':
            m.register_forward_hook(get_activation_student(n))

    if config["loss"]["random"]:
        random_layer = network.RandomLayer(
            [base_network.output_num(), class_num],
            config["loss"]["random_dim"])
        ad_net = network.AdversarialNetwork(config["loss"]["random_dim"], 1024)
    else:
        random_layer = None
        ad_net = network.AdversarialNetwork(
            base_network.output_num() * class_num, 1024)
    if config["loss"]["random"]:
        random_layer.cuda()
    ad_net = ad_net.cuda()
    parameter_list = base_network.get_parameters() + ad_net.get_parameters()
    Hloss = loss.Entropy()
    ## set optimizer
    optimizer_config = config["optimizer"]
    optimizer = optimizer_config["type"](parameter_list, \
                    **(optimizer_config["optim_params"]))
    param_lr = []
    for param_group in optimizer.param_groups:
        param_lr.append(param_group["lr"])
    schedule_param = optimizer_config["lr_param"]
    lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]

    gpus = config['gpu'].split(',')
    if len(gpus) > 1:
        ad_net = nn.DataParallel(ad_net, device_ids=[int(i) for i in gpus])
        base_network = nn.DataParallel(base_network,
                                       device_ids=[int(i) for i in gpus])

    ## train
    len_train_source = len(dset_loaders["source"])
    len_train_target = len(dset_loaders["target"])
    transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
    best_acc = 0.0
    temperature = config["temperature"]

    for i in trange(config["num_iterations"], leave=False):
        global activation_student
        if i % config["test_interval"] == config["test_interval"] - 1:
            base_network.eval()
            base_network_teacher.eval()
            temp_acc, temp_acc_teacher = image_classification_test(dset_loaders, \
                base_network, base_network_teacher, test_10crop=prep_config["test_10crop"])
            temp_model = nn.Sequential(base_network_teacher)
            if temp_acc > best_acc:
                best_acc = temp_acc
                best_model = temp_model
            log_str = "iter: {:05d}, precision: {:.5f}".format(i, temp_acc)
            log_str1 = "precision: {:.5f}".format(temp_acc_teacher)
            config["out_file"].write(log_str + "\t" + log_str1 + "\t" +
                                     str(classifier_loss.item()) + "\t" +
                                     str(dann_loss.item()) + "\t" +
                                     str(ent_loss.item()) + "\t" + "\n")
            config["out_file"].flush()
            print("ent Loss: ", ent_loss.item())
            print("Dann loss: ", dann_loss.item())
            print("Classification Loss: ", classifier_loss.item())
            print(log_str)
            print(log_str1)
        # if i % config["snapshot_interval"] == 0:
        #     torch.save(nn.Sequential(base_network), osp.join(config["output_path"], \
        #         "iter_{:05d}_model.pth.tar".format(i)))

        loss_params = config["loss"]
        ## train one iter
        base_network.train(True)
        base_network_teacher.train(True)

        ad_net.train(True)
        optimizer = lr_scheduler(optimizer, i, **schedule_param)
        optimizer.zero_grad()
        if i % len_train_source == 0:
            iter_source = iter(dset_loaders["source"])
        if i % len_train_target == 0:
            iter_target = iter(dset_loaders["target"])

        inputs_source, labels_source = iter_source.next()
        inputs_target, labels_target = iter_target.next()

        inputs_source1, inputs_source2, inputs_target1, inputs_target2, labels_source = utils.get_copies(
            inputs_source, inputs_target, labels_source)

        margin = 1
        loss_alter = 0

        #### For source data

        features_source, outputs_source = base_network(inputs_source1)
        # features_source2, outputs_source2 = base_network(inputs_source2)

        feature1 = base_network_teacher.features1(inputs_source2)
        feature2 = base_network_teacher.features2(feature1)
        feature3 = base_network_teacher.features3(feature2)
        feature4 = base_network_teacher.features4(feature3)
        feature4_avg = base_network_teacher.avgpool(feature4)
        feature4_res = feature4_avg.view(feature4_avg.size(0), -1)
        features_source2 = base_network_teacher.bottleneck(feature4_res)
        outputs_source2 = base_network_teacher.fc(features_source2)

        loss_alter += loss.decision_boundary_transfer(
            activation_student['layer1.2.bn3'], feature1.detach(), margin) / (
                train_bs * activation_student['layer1.2.bn3'].size(1) * 8)
        loss_alter += loss.decision_boundary_transfer(
            activation_student['layer2.3.bn3'], feature2.detach(), margin) / (
                train_bs * activation_student['layer2.3.bn3'].size(1) * 4)
        loss_alter += loss.decision_boundary_transfer(
            activation_student['layer3.5.bn3'], feature3.detach(), margin) / (
                train_bs * activation_student['layer3.5.bn3'].size(1) * 2)
        loss_alter += loss.decision_boundary_transfer(
            activation_student['layer4.2.bn3'], feature4.detach(),
            margin) / (train_bs * activation_student['layer4.2.bn3'].size(1))

        ## For Target data
        ramp = utils.sigmoid_rampup(i, 100004)
        ramp_confidence = utils.sigmoid_rampup(5 * i, 100004)

        features_target, outputs_target = base_network(inputs_target1)
        sample_selection_indices = get_confident_idx.confident_samples(
            base_network, inputs_target1, ramp_confidence, class_num, train_bs)

        confident_targets = utils.subsample(outputs_target,
                                            sample_selection_indices)

        feature1_teacher = base_network_teacher.features1(inputs_target2)
        feature2_teacher = base_network_teacher.features2(feature1_teacher)
        feature3_teacher = base_network_teacher.features3(feature2_teacher)
        feature4_teacher = base_network_teacher.features4(feature3_teacher)
        feature4_teacher_avg = base_network_teacher.avgpool(feature4_teacher)
        feature4_teacher_res = feature4_teacher_avg.view(
            feature4_teacher_avg.size(0), -1)
        features_target2 = base_network_teacher.bottleneck(
            feature4_teacher_res)
        outputs_target2 = base_network_teacher.fc(features_target2)

        loss_alter += loss.decision_boundary_transfer(
            activation_student['layer1.2.bn3'], feature1_teacher.detach(),
            margin) / (train_bs * activation_student['layer1.2.bn3'].size(1) *
                       8)
        loss_alter += loss.decision_boundary_transfer(
            activation_student['layer2.3.bn3'], feature2_teacher.detach(),
            margin) / (train_bs * activation_student['layer2.3.bn3'].size(1) *
                       4)
        loss_alter += loss.decision_boundary_transfer(
            activation_student['layer3.5.bn3'], feature3_teacher.detach(),
            margin) / (train_bs * activation_student['layer3.5.bn3'].size(1) *
                       2)
        loss_alter += loss.decision_boundary_transfer(
            activation_student['layer4.2.bn3'], feature4_teacher.detach(),
            margin) / (train_bs * activation_student['layer4.2.bn3'].size(1))

        loss_alter = loss_alter / 1000  ## May be multiply with 4 later in tests
        loss_alter = loss_alter.unsqueeze(0).unsqueeze(1)

        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)
        softmax_out_src = nn.Softmax(dim=1)(outputs_source)
        softmax_out_tar = nn.Softmax(dim=1)(outputs_target)
        softmax_out = nn.Softmax(dim=1)(outputs)

        features_teacher = torch.cat((features_source2, features_target2),
                                     dim=0)
        outputs_teacher = torch.cat((outputs_source2, outputs_target2), dim=0)
        softmax_out_src_teacher = nn.Softmax(dim=1)(outputs_source2)
        softmax_out_tar_teacher = nn.Softmax(dim=1)(outputs_target2)
        softmax_out_teacher = nn.Softmax(dim=1)(outputs_teacher)

        if config['method'] == 'DANN+E':
            ent_loss = Hloss(confident_targets)
            dann_loss = loss.DANN(features, ad_net)
        elif config['method'] == 'DANN':
            dann_loss = loss.DANN(features, ad_net)
            # dann_loss = 0
        else:
            raise ValueError('Method cannot be recognized.')
        classifier_loss = nn.CrossEntropyLoss()(outputs_source, labels_source)
        # loss_KD = -(F.softmax(outputs_teacher/ temperature, 1).detach() *
        # 	        (F.log_softmax(outputs/temperature, 1) - F.log_softmax(outputs_teacher/temperature, 1).detach())).sum() / train_bs
        # print(loss_KD)
        # total_loss =  loss_alter #+ (config["ent_loss"] * ent_loss)

        total_loss = dann_loss + classifier_loss + (
            ramp * ent_loss)  #+ (config["ent_loss"] * ent_loss)
        total_loss.backward(retain_graph=True)
        optimizer.step()
        loss.update_ema_variables(base_network, base_network_teacher,
                                  config["teacher_alpha"], i)
    torch.save(best_model, osp.join(config["output_path"],
                                    "best_model.pth.tar"))
    return best_acc
示例#9
0
def train(args, model, ad_net, random_layer, train_loader, train_loader1,
          optimizer, optimizer_ad, epoch, start_epoch, method, ccp):
    cl_method = 'ga'  #choices=['ga', 'nn', 'free', 'pc', 'forward']
    meta_method = 'free' if cl_method == 'ga' else cl_method
    K = 10

    model.train()
    len_source = len(train_loader)
    len_target = len(train_loader1)
    if len_source > len_target:
        num_iter = len_source
    else:
        num_iter = len_target

    for batch_idx in range(num_iter):
        if batch_idx % len_source == 0:
            iter_source = iter(train_loader)
        if batch_idx % len_target == 0:
            iter_target = iter(train_loader1)
        data_source, label_source = iter_source.next()
        data_source, label_source = data_source.cuda(), label_source.cuda()
        data_target, label_target = iter_target.next()
        data_target = data_target.cuda()
        optimizer.zero_grad()
        optimizer_ad.zero_grad()
        feature, output = model(torch.cat((data_source, data_target), 0))
        #err_s_label, loss_vector = non_negative_loss (f=output.narrow(0, 0, data_source.size(0)), K=10, labels=label_source, ccp=ccp,beta=0)
        loss, loss_vector = chosen_loss_c(f=output.narrow(
            0, 0, data_source.size(0)),
                                          K=K,
                                          labels=label_source,
                                          ccp=ccp,
                                          meta_method=meta_method)
        #loss = nn.CrossEntropyLoss()(output.narrow(0, 0, data_source.size(0)), label_source)
        softmax_output = nn.Softmax(dim=1)(output)
        if cl_method == 'ga':
            if torch.min(loss_vector).item() < 0:
                loss_vector_with_zeros = torch.cat(
                    (loss_vector.view(-1, 1), torch.zeros(
                        K, requires_grad=True).view(-1, 1).to(device)), 1)
                min_loss_vector, _ = torch.min(loss_vector_with_zeros, dim=1)
                loss = torch.sum(min_loss_vector)
                loss.backward(retain_graph=True)
                for group in optimizer.param_groups:
                    for p in group['params']:
                        p.grad = -1 * p.grad
            else:
                loss.backward(retain_graph=True)
        else:
            loss.backward(retain_graph=True)
        optimizer.step()
        optimizer.zero_grad()
        if epoch > start_epoch:
            if method == 'CDAN-E':
                softmax_output = Tsharpen(softmax_output)
                entropy = loss_func.Entropy(softmax_output)
                loss2 = loss_func.CDAN(
                    [feature, softmax_output], ad_net, entropy,
                    network.calc_coeff(num_iter * (epoch - start_epoch) +
                                       batch_idx), random_layer)
            elif method == 'CDAN':
                loss2 = loss_func.CDAN([feature, softmax_output], ad_net, None,
                                       None, random_layer)
            elif method == 'DANN':
                loss2 = loss_func.DANN(feature, ad_net)
            else:
                raise ValueError('Method cannot be recognized.')
        if epoch > start_epoch:
            loss2.backward()
            optimizer.step()
            optimizer_ad.step()
        if (batch_idx + epoch * num_iter) % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss1: {:.6f}'.format(
                epoch, batch_idx * args.batch_size, num_iter * args.batch_size,
                100. * batch_idx / num_iter, loss.item()))
def train(args, model, ad_net, source_samples, source_labels, target_samples,
          target_labels, optimizer, optimizer_ad, epoch, start_epoch, method,
          source_label_distribution, out_wei_file, cov_mat,
          pseudo_target_label, class_weights, true_weights):
    model.train()

    cov_mat[:] = 0.0
    pseudo_target_label[:] = 0.0

    len_source = source_labels.shape[0]
    len_target = target_labels.shape[0]

    size = max(len_source, len_target)
    num_iter = int(size / args.batch_size)

    for batch_idx in range(num_iter):
        t = time.time()
        source_idx = np.random.choice(len_source, args.batch_size)
        target_idx = np.random.choice(len_target, args.batch_size)
        data_source, label_source = source_samples[source_idx], source_labels[
            source_idx]
        data_target, _ = target_samples[target_idx], target_labels[target_idx]

        optimizer.zero_grad()
        optimizer_ad.zero_grad()
        feature, output = model(torch.cat((data_source, data_target), 0))

        if 'IW' in method:
            ys_onehot = torch.zeros(args.batch_size, 10).to(args.device)
            ys_onehot.scatter_(1, label_source.view(-1, 1), 1)
            # Compute weights on source data.
            if 'ORACLE' in method:
                weights = torch.mm(ys_onehot, true_weights)
            else:
                weights = torch.mm(ys_onehot, model.im_weights)

            source_preds, target_preds = output[:args.batch_size], output[
                args.batch_size:]
            # Compute the aggregated distribution of pseudo-label on the target domain.
            pseudo_target_label += torch.sum(F.softmax(target_preds, dim=1),
                                             dim=0).view(-1, 1).detach()
            # Update the covariance matrix on the source domain as well.
            cov_mat += torch.mm(
                F.softmax(source_preds, dim=1).transpose(1, 0),
                ys_onehot).detach()

            loss = torch.mean(
                nn.CrossEntropyLoss(weight=class_weights, reduction='none')
                (output.narrow(0, 0, data_source.size(0)), label_source) *
                weights) / 10.0
        else:
            loss = nn.CrossEntropyLoss()(output.narrow(0, 0,
                                                       data_source.size(0)),
                                         label_source)

        if epoch > start_epoch:
            if method == 'CDAN-E':
                softmax_output = nn.Softmax(dim=1)(output)
                entropy = loss_func.Entropy(softmax_output)
                loss += loss_func.CDAN(
                    [feature, softmax_output],
                    ad_net,
                    entropy,
                    network.calc_coeff(num_iter * (epoch - start_epoch) +
                                       batch_idx),
                    None,
                    device=args.device)

            elif 'IWCDAN-E' in method:
                softmax_output = nn.Softmax(dim=1)(output)
                entropy = loss_func.Entropy(softmax_output)
                loss += loss_func.CDAN(
                    [feature, softmax_output],
                    ad_net,
                    entropy,
                    network.calc_coeff(num_iter * (epoch - start_epoch) +
                                       batch_idx),
                    None,
                    weights=weights,
                    device=args.device)

            elif method == 'CDAN':
                softmax_output = nn.Softmax(dim=1)(output)
                loss += loss_func.CDAN([feature, softmax_output],
                                       ad_net,
                                       None,
                                       None,
                                       None,
                                       device=args.device)

            elif 'IWCDAN' in method:
                softmax_output = nn.Softmax(dim=1)(output)
                loss += loss_func.CDAN([feature, softmax_output],
                                       ad_net,
                                       None,
                                       None,
                                       None,
                                       weights=weights,
                                       device=args.device)

            elif method == 'DANN':
                loss += loss_func.DANN(feature, ad_net, args.device)

            elif 'IWDAN' in method:
                dloss = loss_func.IWDAN(feature, ad_net, weights)
                loss += args.mu * dloss

            elif method == 'NANN':
                pass

            else:
                raise ValueError('Method cannot be recognized.')

        loss.backward()
        optimizer.step()

        if epoch > start_epoch and method != 'NANN':
            optimizer_ad.step()

    if 'IW' in method and epoch > start_epoch:
        pseudo_target_label /= args.batch_size * num_iter
        cov_mat /= args.batch_size * num_iter
        # Recompute the importance weight by solving a QP.
        model.im_weights_update(source_label_distribution,
                                pseudo_target_label.cpu().detach().numpy(),
                                cov_mat.cpu().detach().numpy(), args.device)
        current_weights = [
            round(x, 4) for x in model.im_weights.data.cpu().numpy().flatten()
        ]
        write_list(out_wei_file, [
            np.linalg.norm(current_weights -
                           true_weights.cpu().numpy().flatten())
        ] + current_weights)
        print(
            np.linalg.norm(current_weights -
                           true_weights.cpu().numpy().flatten()),
            current_weights)
示例#11
0
def train(args):
    ## set pre-process
    dset_loaders = data_load(args)
    class_num = args.class_num
    class_weight_src = torch.ones(class_num, ).cuda()
    ##################################################################################################

    ## set base network
    if args.net == 'resnet34':
        netG = utils.ResBase34().cuda()
    elif args.net == 'vgg16':
        netG = utils.VGG16Base().cuda()

    netF = utils.ResClassifier(class_num=class_num,
                               feature_dim=netG.in_features,
                               bottleneck_dim=args.bottleneck_dim).cuda()

    max_len = max(len(dset_loaders["source"]), len(dset_loaders["target"]))
    args.max_iter = args.max_epoch * max_len

    ad_flag = False
    if args.method == 'DANN':
        ad_net = utils.AdversarialNetwork(args.bottleneck_dim,
                                          1024,
                                          max_iter=args.max_iter).cuda()
        ad_flag = True
    if args.method == 'CDANE':
        ad_net = utils.AdversarialNetwork(args.bottleneck_dim * class_num,
                                          1024,
                                          max_iter=args.max_iter).cuda()
        random_layer = None
        ad_flag = True

    optimizer_g = optim.SGD(netG.parameters(), lr=args.lr * 0.1)
    optimizer_f = optim.SGD(netF.parameters(), lr=args.lr)
    if ad_flag:
        optimizer_d = optim.SGD(ad_net.parameters(), lr=args.lr)

    base_network = nn.Sequential(netG, netF)

    if args.pl.startswith('atdoc_na'):
        mem_fea = torch.rand(
            len(dset_loaders["target"].dataset) +
            len(dset_loaders["ltarget"].dataset), args.bottleneck_dim).cuda()
        mem_fea = mem_fea / torch.norm(mem_fea, p=2, dim=1, keepdim=True)
        mem_cls = torch.ones(
            len(dset_loaders["target"].dataset) +
            len(dset_loaders["ltarget"].dataset), class_num).cuda() / class_num

    if args.pl == 'atdoc_nc':
        mem_fea = torch.rand(args.class_num, args.bottleneck_dim).cuda()
        mem_fea = mem_fea / torch.norm(mem_fea, p=2, dim=1, keepdim=True)

    source_loader_iter = iter(dset_loaders["source"])
    target_loader_iter = iter(dset_loaders["target"])
    ltarget_loader_iter = iter(dset_loaders["ltarget"])

    # ###
    list_acc = []
    best_val_acc = 0

    for iter_num in range(1, args.max_iter + 1):
        # print(iter_num)
        base_network.train()
        lr_scheduler(optimizer_g,
                     init_lr=args.lr * 0.1,
                     iter_num=iter_num,
                     max_iter=args.max_iter)
        lr_scheduler(optimizer_f,
                     init_lr=args.lr,
                     iter_num=iter_num,
                     max_iter=args.max_iter)
        if ad_flag:
            lr_scheduler(optimizer_d,
                         init_lr=args.lr,
                         iter_num=iter_num,
                         max_iter=args.max_iter)

        try:
            inputs_source, labels_source = source_loader_iter.next()
        except:
            source_loader_iter = iter(dset_loaders["source"])
            inputs_source, labels_source = source_loader_iter.next()
        try:
            inputs_target, _, idx = target_loader_iter.next()
        except:
            target_loader_iter = iter(dset_loaders["target"])
            inputs_target, _, idx = target_loader_iter.next()

        try:
            inputs_ltarget, labels_ltarget, lidx = ltarget_loader_iter.next()
        except:
            ltarget_loader_iter = iter(dset_loaders["ltarget"])
            inputs_ltarget, labels_ltarget, lidx = ltarget_loader_iter.next()

        inputs_ltarget, labels_ltarget = inputs_ltarget.cuda(
        ), labels_ltarget.cuda()

        inputs_source, inputs_target, labels_source = inputs_source.cuda(
        ), inputs_target.cuda(), labels_source.cuda()

        if args.method == 'srconly' and args.pl == 'none':
            features_source, outputs_source = base_network(inputs_source)
            features_ltarget, outputs_ltarget = base_network(inputs_ltarget)
        else:
            features_ltarget, outputs_ltarget = base_network(inputs_ltarget)
            features_source, outputs_source = base_network(inputs_source)
            features_target, outputs_target = base_network(inputs_target)

            features_target = torch.cat((features_ltarget, features_target),
                                        dim=0)
            outputs_target = torch.cat((outputs_ltarget, outputs_target),
                                       dim=0)

            features = torch.cat((features_source, features_target), dim=0)
            outputs = torch.cat((outputs_source, outputs_target), dim=0)
            softmax_out = nn.Softmax(dim=1)(outputs)

        eff = utils.calc_coeff(iter_num, max_iter=args.max_iter)

        if args.method[-1] == 'E':
            entropy = loss.Entropy(softmax_out)
        else:
            entropy = None

        if args.method == 'CDANE':
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy,
                                      eff, random_layer)

        elif args.method == 'DANN':
            transfer_loss = loss.DANN(features, ad_net, entropy, eff)

        elif args.method == 'srconly':
            transfer_loss = torch.tensor(0.0).cuda()
        else:
            raise ValueError('Method cannot be recognized.')

        src_ = loss.CrossEntropyLabelSmooth(reduction='none',
                                            num_classes=class_num,
                                            epsilon=args.smooth)(
                                                outputs_source, labels_source)
        weight_src = class_weight_src[labels_source].unsqueeze(0)
        classifier_loss = torch.sum(
            weight_src * src_) / (torch.sum(weight_src).item())
        total_loss = transfer_loss + classifier_loss

        ltar_ = loss.CrossEntropyLabelSmooth(reduction='none',
                                             num_classes=class_num,
                                             epsilon=args.smooth)(
                                                 outputs_ltarget,
                                                 labels_ltarget)
        weight_src = class_weight_src[labels_ltarget].unsqueeze(0)
        ltar_classifier_loss = torch.sum(
            weight_src * ltar_) / (torch.sum(weight_src).item())
        total_loss += ltar_classifier_loss

        eff = iter_num / args.max_iter

        if not args.pl == 'none':
            outputs_target = outputs_target[-args.batch_size // 3:, :]
            features_target = features_target[-args.batch_size // 3:, :]

        if args.pl == 'none':
            pass

        elif args.pl == 'square':
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            square_loss = -torch.sqrt((softmax_out**2).sum(dim=1)).mean()
            total_loss += args.tar_par * eff * square_loss

        elif args.pl == 'bsp':
            sigma_loss = bsp_loss(features)
            total_loss += args.tar_par * sigma_loss

        elif args.pl == 'ent':
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            ent_loss = torch.mean(loss.Entropy(softmax_out))
            ent_loss /= torch.log(torch.tensor(class_num + 0.0))
            total_loss += args.tar_par * eff * ent_loss

        elif args.pl == 'bnm':
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            bnm_loss = -torch.norm(softmax_out, 'nuc')
            cof = torch.tensor(
                np.sqrt(np.min(softmax_out.size())) / softmax_out.size(0))
            bnm_loss *= cof
            total_loss += args.tar_par * eff * bnm_loss

        elif args.pl == 'mcc':
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            ent_weight = 1 + torch.exp(-loss.Entropy(softmax_out)).detach()
            ent_weight /= ent_weight.sum()
            cov_tar = softmax_out.t().mm(
                torch.diag(softmax_out.size(0) * ent_weight)).mm(softmax_out)
            mcc_loss = (torch.diag(cov_tar) / cov_tar.sum(dim=1)).mean()
            total_loss -= args.tar_par * eff * mcc_loss

        elif args.pl == 'npl':
            softmax_out = nn.Softmax(dim=1)(outputs_target)
            softmax_out = softmax_out**2 / ((softmax_out**2).sum(dim=0))

            weight_, pred = torch.max(softmax_out, 1)
            loss_ = nn.CrossEntropyLoss(reduction='none')(outputs_target, pred)
            classifier_loss = torch.sum(
                weight_ * loss_) / (torch.sum(weight_).item())
            total_loss += args.tar_par * eff * classifier_loss

        elif args.pl == 'atdoc_nc':
            mem_fea_norm = mem_fea / torch.norm(
                mem_fea, p=2, dim=1, keepdim=True)
            dis = torch.mm(features_target.detach(), mem_fea_norm.t())
            _, pred = torch.max(dis, dim=1)
            classifier_loss = nn.CrossEntropyLoss()(outputs_target, pred)
            total_loss += args.tar_par * eff * classifier_loss

        elif args.pl.startswith('atdoc_na'):

            dis = -torch.mm(features_target.detach(), mem_fea.t())
            for di in range(dis.size(0)):
                dis[di, idx[di]] = torch.max(dis)
            _, p1 = torch.sort(dis, dim=1)

            w = torch.zeros(features_target.size(0), mem_fea.size(0)).cuda()
            for wi in range(w.size(0)):
                for wj in range(args.K):
                    w[wi][p1[wi, wj]] = 1 / args.K

            weight_, pred = torch.max(w.mm(mem_cls), 1)

            if args.pl.startswith('atdoc_na_now'):
                classifier_loss = nn.CrossEntropyLoss()(outputs_target, pred)
            else:
                loss_ = nn.CrossEntropyLoss(reduction='none')(outputs_target,
                                                              pred)
                classifier_loss = torch.sum(
                    weight_ * loss_) / (torch.sum(weight_).item())
            total_loss += args.tar_par * eff * classifier_loss

        optimizer_g.zero_grad()
        optimizer_f.zero_grad()
        if ad_flag:
            optimizer_d.zero_grad()
        total_loss.backward()
        optimizer_g.step()
        optimizer_f.step()
        if ad_flag:
            optimizer_d.step()

        if args.pl.startswith('atdoc_na'):
            base_network.eval()
            with torch.no_grad():
                features_target, outputs_target = base_network(inputs_target)
                features_target = features_target / torch.norm(
                    features_target, p=2, dim=1, keepdim=True)
                softmax_out = nn.Softmax(dim=1)(outputs_target)
                if args.pl.startswith('atdoc_na_nos'):
                    outputs_target = softmax_out
                else:
                    outputs_target = softmax_out**2 / (
                        (softmax_out**2).sum(dim=0))

            mem_fea[idx] = (1.0 - args.momentum) * mem_fea[
                idx] + args.momentum * features_target.clone()
            mem_cls[idx] = (1.0 - args.momentum) * mem_cls[
                idx] + args.momentum * outputs_target.clone()

            with torch.no_grad():
                features_ltarget, outputs_ltarget = base_network(
                    inputs_ltarget)
                features_ltarget = features_ltarget / torch.norm(
                    features_ltarget, p=2, dim=1, keepdim=True)
                softmax_out = nn.Softmax(dim=1)(outputs_ltarget)
                if args.pl.startswith('atdoc_na_nos'):
                    outputs_ltarget = softmax_out
                else:
                    outputs_ltarget = softmax_out**2 / (
                        (softmax_out**2).sum(dim=0))

            mem_fea[lidx + len(dset_loaders["target"].dataset)] = (1.0 - args.momentum) * \
                mem_fea[lidx + len(dset_loaders["target"].dataset)] + args.momentum * features_ltarget.clone()
            mem_cls[lidx + len(dset_loaders["target"].dataset)] = (1.0 - args.momentum) * \
                mem_cls[lidx + len(dset_loaders["target"].dataset)] + args.momentum * outputs_ltarget.clone()

        if args.pl == 'atdoc_nc':
            base_network.eval()
            with torch.no_grad():
                feat_u, outputs_target = base_network(inputs_target)
                softmax_t = nn.Softmax(dim=1)(outputs_target)
                _, pred_t = torch.max(softmax_t, 1)
                onehot_tu = torch.eye(args.class_num)[pred_t].cuda()

                feat_l, outputs_target = base_network(inputs_ltarget)
                softmax_t = nn.Softmax(dim=1)(outputs_target)
                _, pred_t = torch.max(softmax_t, 1)
                onehot_tl = torch.eye(args.class_num)[pred_t].cuda()

            center_t = ((torch.mm(feat_u.t(), onehot_tu) + torch.mm(
                feat_l.t(), onehot_tl))) / (onehot_tu.sum(dim=0) +
                                            onehot_tl.sum(dim=0) + 1e-8)
            mem_fea = (1.0 - args.momentum
                       ) * mem_fea + args.momentum * center_t.t().clone()

        if iter_num % int(args.eval_epoch * max_len) == 0:
            base_network.eval()
            acc, py, score, y = utils.cal_acc(dset_loaders["test"],
                                              base_network)
            val_acc, _, _, _ = utils.cal_acc(dset_loaders["val"], base_network)

            list_acc.append(acc * 100)
            if best_val_acc <= val_acc:
                best_val_acc = val_acc
                best_acc = acc
                best_y = y
                best_py = py
                best_score = score

            log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%; Val Acc = {:.2f}%'.format(
                args.name, iter_num, args.max_iter, acc * 100, val_acc * 100)
            args.out_file.write(log_str + '\n')
            args.out_file.flush()
            print(log_str + '\n')

    val_acc = best_acc * 100
    idx = np.argmax(np.array(list_acc))
    max_acc = list_acc[idx]
    final_acc = list_acc[-1]

    log_str = '\n==========================================\n'
    log_str += '\nVal Acc = {:.2f}\nMax Acc = {:.2f}\nFin Acc = {:.2f}\n'.format(
        val_acc, max_acc, final_acc)
    args.out_file.write(log_str + '\n')
    args.out_file.flush()
示例#12
0
def train(source_loader, target_loader, model, ad_net, criterion, optimizer,
          epoch, log, num_class):
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses_a = AverageMeter()  #adversarial loss
    losses_c = AverageMeter()  #classification loss2
    losses = AverageMeter()  #final loss
    top1 = AverageMeter()
    top5 = AverageMeter()

    if args.no_partialbn:
        model.module.partialBN(False)
    else:
        model.module.partialBN(True)

    # switch to train mode
    model.train()
    ad_net.train()

    end = time.time()
    data_loader = enumerate(zip(source_loader, target_loader))

    for i, ((source_data, source_label), (target_data,
                                          target_label)) in data_loader:
        # measure data loading time
        data_time.update(time.time() - end)

        source_label = source_label.cuda(async=True)
        target_label = target_label.cuda(async=True)
        source_input_var = torch.autograd.Variable(source_data)
        source_target_var = torch.autograd.Variable(source_label)
        output_s, feature_s = model(source_input_var)
        target_input_var = torch.autograd.Variable(target_data)
        target_target_var = torch.autograd.Variable(target_label)
        output_t, feature_t = model(target_input_var)
        features = torch.cat((feature_s, feature_t), dim=0)
        #print('features.size() is:', features.size())

        #======calculate loss function=====#
        #1. calculate classification loss losses_c

        loss_c = criterion(output_s, source_target_var)
        losses_c.update(loss_c.data[0], source_data.size(0))
        loss = loss_c

        #2. calculate the adversarial loss loss_a
        #features = features.view(features.size(0), -1)

        loss_a = los.DANN(features, ad_net)
        loss = loss_c + loss_a

        # measure accuracy and record loss
        #prec1, prec5 = accuracy(output_s.data, source_label, topk=(1,5))
        prec1, prec5 = accuracy(output_s.data, source_label, topk=(1, 5))
        top1.update(prec1[0], output_s.size(0))
        top5.update(prec5[0], output_s.size(0))

        # compute gradient and do SGD step
        optimizer.zero_grad()

        losses.update(loss.data[0])
        loss.backward()
        #loss_c.backward()

        if args.clip_gradient is not None:
            total_norm = clip_grad_norm(model.parameters(), args.clip_gradient)
        #    if total_norm > args.clip_gradient:
        #        print("clipping gradient: {} with coef {}".format(total_norm, args.clip_gradient / total_norm))

        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            output = ('Epoch: [{0}][{1}/{2}], lr: {lr:.5f}\t'
                      'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
                      'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
                      'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                      'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
                      'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
                          epoch,
                          i,
                          len(source_loader),
                          batch_time=batch_time,
                          data_time=data_time,
                          loss=losses,
                          top1=top1,
                          top5=top5,
                          lr=optimizer.param_groups[-1]['lr']))
            print(output)
            log.write(output + '\n')
            log.flush()
示例#13
0
def train(config):
    ## set pre-process
    prep_dict = {}
    prep_config = config["prep"]
    prep_dict["source"] = prep.image_train(**config["prep"]['params'])
    prep_dict["target"] = prep.image_train(**config["prep"]['params'])
    if prep_config["test_10crop"]:
        prep_dict["test"] = prep.image_test_10crop(**config["prep"]['params'])
    else:
        prep_dict["test"] = prep.image_test(**config["prep"]['params'])

    ## prepare data
    dsets = {}
    dset_loaders = {}
    data_config = config["data"]
    train_bs = data_config["source"]["batch_size"]
    test_bs = data_config["test"]["batch_size"]
    dsets["source"] = ImageList(open(data_config["source"]["list_path"]).readlines(), \
                                transform=prep_dict["source"])
    dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, \
                                        shuffle=True, num_workers=4, drop_last=True)
    dsets["target"] = ImageList(open(data_config["target"]["list_path"]).readlines(), \
                                transform=prep_dict["target"])
    dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
                                        shuffle=True, num_workers=4, drop_last=True)

    if prep_config["test_10crop"]:
        for i in range(10):
            dsets["test"] = [ImageList(open(data_config["test"]["list_path"]).readlines(), \
                                       transform=prep_dict["test"][i]) for i in range(10)]
            dset_loaders["test"] = [DataLoader(dset, batch_size=test_bs, \
                                               shuffle=False, num_workers=4) for dset in dsets['test']]
    else:
        dsets["test"] = ImageList(open(data_config["test"]["list_path"]).readlines(), \
                                  transform=prep_dict["test"])
        dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, \
                                          shuffle=False, num_workers=4)

    class_num = config["network"]["params"]["class_num"]

    ## set base network
    net_config = config["network"]
    base_network = net_config["name"](**net_config["params"])
    base_network = base_network.cuda()


    with torch.no_grad():
        cluster_data_loader = {}
        cluster_data_loader["source"] = DataLoader(dsets["source"], batch_size=100, \
                                                   shuffle=True, num_workers=0, drop_last=True)
        cluster_data_loader["target"] = DataLoader(dsets["source"], batch_size=100, \
                                                   shuffle=True, num_workers=0, drop_last=True)


    ## add additional network for some methods




    if config["loss"]["random"]:
        random_layer = network.RandomLayer([base_network.output_num(), class_num], config["loss"]["random_dim"])
        ad_net = network.AdversarialNetwork(config["loss"]["random_dim"], 1024)
    else:
        random_layer = None
        ad_net = network.AdversarialNetwork(base_network.output_num() * class_num, 1024)
    if config["loss"]["random"]:
        random_layer.cuda()
    ad_net = ad_net.cuda()
    parameter_list = base_network.get_parameters() + ad_net.get_parameters()

    ## set optimizer
    optimizer_config = config["optimizer"]
    optimizer = optimizer_config["type"](parameter_list, \
                                         **(optimizer_config["optim_params"]))
    param_lr = []
    for param_group in optimizer.param_groups:
        param_lr.append(param_group["lr"])
    schedule_param = optimizer_config["lr_param"]
    lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]

    gpus = config['gpu'].split(',')
    if len(gpus) > 1:
        ad_net = nn.DataParallel(ad_net, device_ids=[int(i) for i in gpus])
        base_network = nn.DataParallel(base_network, device_ids=[int(i) for i in gpus])

    # dset_loaders["ps_target"]=[]
    ## train
    len_train_source = len(dset_loaders["source"])
    # len_train_target = len(dset_loaders["ps_target"])
    transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
    best_acc = 0.0
    for i in range(config["num_iterations"]):
        lamb = adaptation_factor((i+1)/10000)
        cls_lamb = adaptation_factor(5*(i+1)/10000)
        epoch = int(i / len_train_source)
        if i% len_train_source ==0:
            testing = True
            pl_update=True
            print_loss =True
            # print("epoch: {} ".format(int(i / len_train_source)))
        if epoch % 5 ==0 and pl_update:
            pl_update= False
            # del dset_loaders["ps_target"]
            pseudo_labeled_targets,target_g_ctr, source_g_ctr = pseudo_labeling(base_network, cluster_data_loader, class_num)
            global_source_ctr = source_g_ctr.detach_()
            global_target_ctr = target_g_ctr.detach_()
            if len(pseudo_labeled_targets["label_list"]) !=0:
                print("new pl at epoch {}".format(epoch))

                pseudo_dataset = PS_ImageList(pseudo_labeled_targets, transform=prep_dict["target"])

                dset_loaders["ps_target"] = DataLoader(pseudo_dataset, batch_size=train_bs, \
                                                       shuffle=False, num_workers=0, drop_last=True)
                len_train_target = len(dset_loaders["ps_target"])
            else:
                print("no pl at epoch {}".format(epoch))
            # print("pseudo labeling done")
        # print(i)




        # if i % config["test_interval"] == config["test_interval"] - 1:

        if epoch % 5 ==0 and testing and i>0:


            base_network.train(False)
            temp_acc,v_loss = image_classification_test(dset_loaders, \
                                                 base_network, test_10crop=prep_config["test_10crop"])
            temp_model = nn.Sequential(base_network)
            if temp_acc > best_acc:
                best_acc = temp_acc
                best_model = temp_model
            log_str = "iter: {:05d}, precision: {:.5f}".format(i, temp_acc)
            config["out_file"].write(log_str + "\n")
            config["out_file"].flush()
            print(log_str)
            testing=False

            now = datetime.now()
            current_time = now.strftime("%H:%M:%S")
            print("epoch: {} ".format(int(i / len_train_source)))
            print("time: {} ".format(current_time))
            print("best acc: {} ".format(best_acc))
            print("loss: {} ".format(v_loss))
            print("adaptation rate : {}".format(lamb))
            print("learning rare : {} {} {} {}".format(optimizer.param_groups[0]["lr"],optimizer.param_groups[1]["lr"],optimizer.param_groups[2]["lr"],optimizer.param_groups[3]["lr"]))
            print("------------")
        if i % config["snapshot_interval"] == 0:
            torch.save(nn.Sequential(base_network), osp.join(config["output_path"], \
                                                             "iter_{:05d}_model.pth.tar".format(i)))

        loss_params = config["loss"]
        ## train one iter
        base_network.train(True)
        ad_net.train(True)
        optimizer = lr_scheduler(optimizer, i, **schedule_param)

        optimizer.zero_grad()



        ###
        if i % len_train_source == 0:
            iter_source = iter(dset_loaders["source"])
        if i % len_train_target == 0:
            # print(i,len_train_target)
            iter_target = iter(dset_loaders["ps_target"])
        try:
            inputs_source, labels_source, _ = iter_source.next()
            inputs_target, labels_target = iter_target.next()
        except StopIteration:
            iter_target = iter(dset_loaders["ps_target"])
            inputs_target, labels_target = iter_target.next()

        inputs_source, inputs_target, labels_source, labels_target = inputs_source.cuda(), inputs_target.cuda(), labels_source.cuda(), labels_target.cuda()



        features_source, outputs_source = base_network(inputs_source)
        features_target, outputs_target = base_network(inputs_target)

        ##class_aware
        batch_source_centroids = utils.get_batch_centers(features_source, labels_source, class_num)
        batch_target_centroids = utils.get_batch_centers(features_target,labels_target, class_num)

        # if i==0:
        #     global_source_ctr = batch_source_centroids
        #     global_target_ctr = batch_target_centroids
        # if i>0:
        batch_source_centroids = ctr_adapt_factor* global_source_ctr + (1- ctr_adapt_factor) * batch_source_centroids
        batch_target_centroids = ctr_adapt_factor * global_target_ctr + (1 - ctr_adapt_factor) * batch_target_centroids
        global_source_ctr = batch_source_centroids.clone().detach_()
        global_target_ctr = batch_target_centroids.clone().detach_()
        #
        # global_source_ctr = global_source_ctr.cpu().data.numpy()
        # global_target_ctr.detach_()

        # ctr_alignment_loss = utils.cosine_distance(global_source_ctr,global_target_ctr,cross=False)



        # source_p2c_Distances = 0 - utils.cosine_distance(features_source, global_source_ctr, cross=True)
        #
        # target_p2c_Distances = 0 - utils.cosine_distance(features_target, global_target_ctr, cross=True)
        #
        #
        #
        # zero_ctrs_s = torch.unique(torch.where(global_source_ctr==0)[0])
        # zero_ctrs_t = torch.unique(torch.where(global_target_ctr == 0)[0])
        alignment_index = []
        identity = np.eye(class_num)
        ctr_alignment_count =0
        pos = []
        post = []
        neg =[]
        negt =[]
        index_s = np.empty([0,1])
        index_t = np.empty([0,1])
        itt=0
        triplets ={}
        # with torch.no_grad():

        labels = labels_source.cpu().data.numpy()
        labelt = labels_target.cpu().data.numpy()
        # zero_ctrs_s = zero_ctrs_s.cpu().data.numpy()
        # zero_ctrs_t = zero_ctrs_t.cpu().data.numpy()

        #####npair
        # labels = labels.cpu().data.numpy()
        n_pairs = []

        for label in set(labels):
            label_mask = (labels == label)
            label_indices = np.where(label_mask)[0]
            if len(label_indices) < 1:
                continue
            anchor = np.random.choice(label_indices, 1, replace=False)
            n_pairs.append([anchor, np.array([label])])

        n_pairs = np.array(n_pairs)

        n_negatives = []
        for i in range(len(n_pairs)):
            negative = np.concatenate([n_pairs[:i, 1], n_pairs[i + 1:, 1]])
            n_negatives.append(negative)

        n_negatives = np.array(n_negatives)
        n_pairs_s = torch.LongTensor(n_pairs)
        n_neg_s = torch.LongTensor(n_negatives)

        n_pairs = []
        for label in set(labelt):
            label_mask = (labelt == label)
            label_indices = np.where(label_mask)[0]
            if len(label_indices) < 1:
                continue
            anchor = np.random.choice(label_indices, 1, replace=False)
            n_pairs.append([anchor, np.array([label])])

        n_pairs = np.array(n_pairs)

        n_negatives = []
        for i in range(len(n_pairs)):
            negative = np.concatenate([n_pairs[:i, 1], n_pairs[i + 1:, 1]])
            n_negatives.append(negative)

        n_negatives = np.array(n_negatives)
        n_pairs_t = torch.LongTensor(n_pairs)
        n_neg_t = torch.LongTensor(n_negatives)
        # return torch.LongTensor(n_pairs), torch.LongTensor(n_negatives)
        #####

        for it in range(class_num):
            label_mask = (labels == it)
            label_maskt = (labelt == it)
            idx = np.where(label_mask)[0]
            idxt = np.where(label_maskt)[0]
            # idx = torch.flatten(torch.nonzero(labels_source== torch.tensor(it).cuda()))
            if len(idx) !=0:
                index_s =np.append(index_s,idx)
                pos += [it for cc in range(len(idx))]
                mask = 1- identity[it,:]
                neg_id = np.nonzero(mask.flatten())[0].flatten()

                # neg_idx = np.where(np.in1d(neg_id,zero_ctrs_s)!=True)[0]
                neg += [[neg_id] for cc in range(len(idx))]

            if len(idxt) !=0:
                index_t = np.append(index_t, idxt)
                post += [it for cc in range(len(idxt))]
                maskt = 1- identity[it,:]
                neg_idt = np.nonzero(maskt.flatten())[0].flatten()
                # neg_idxt = np.where(np.in1d(neg_idt, zero_ctrs_t))[0]
                negt += [[neg_idt] for cc in range(len(idxt))]
                # negt += [[neg_idt] for cc in range(len(idxt))]

            # alignment_ctr_idx =idx[torch.nonzero(torch.where(idx ==idxt, idx,0))]
            if len(idx) != 0 and len(idxt) !=0:
                ctr_alignment_count +=1
                alignment_index +=[it]
                    # alignment_loss +=[utils.cosine_distance(batch_source_centroids[it], batch_source_centroids[it], cross=False)]
        # tempp = torch.cat(source_loss,0)
        # posetives_s = torch.cat(pos, dim=0)
        # negatives_s = torch.cat(neg, dim=0)
        # posetives_t = torch.cat(post, dim=0)
        # negatives_t = torch.cat(negt, dim=0)
        # a_i = torch.LongTensor(index_s.flatten()).cuda()
        # a_p = torch.LongTensor(pos).cuda()
        # a_n = torch.LongTensor(neg).cuda()
        ctr_alignment_loss =0
        anchors_s = features_source[index_s.flatten(),:]
        positive_s = global_source_ctr[pos,:]
        negative_s = global_source_ctr[neg].squeeze(1)
        # n_pairs_s = n_pairs_s.cuda().squeeze(2)
        # n_neg_s = n_neg_s.cuda().squeeze(2)
        # anchors_s = features_source[n_pairs_s[:, 0]]
        # positive_s = global_source_ctr[n_pairs_s[:, 1]]
        # negative_s = global_source_ctr[n_neg_s]
        #
        # n_pairs_t = n_pairs_t.cuda().squeeze(2)
        #
        # n_neg_t = n_neg_t.cuda().squeeze(2)
        # anchors_t = features_source[n_pairs_t[:, 0]]
        # positive_t = global_source_ctr[n_pairs_t[:, 1]]
        # negative_t = global_source_ctr[n_neg_t]
        # anchors_s.retain_graph=True
        # positive_s.retain_graph=True
        # negative_s.retain_graph=True

        anchors_t = features_target[index_t.flatten(), :]
        positive_t = global_target_ctr[post, :]
        negative_t = global_target_ctr[negt].squeeze(1)
        # FAT_loss = torch.empty([],requires_grad=True)
        # FAT_loss.requires_grad = True
        # FAT_loss.retain_grad()
        # nfat_s = Variable(n_pair_loss(anchors_s,positive_s, negative_s,class_num,train_bs))
        # nfat_t = Variable(n_pair_loss(anchors_t,positive_t, negative_t,class_num,train_bs))
        # FAT_loss.requires_grad = True
        # FAT_loss.retain_grad()
        FAT_loss = n_pair_loss(anchors_s,positive_s, negative_s,class_num,train_bs) + n_pair_loss(anchors_t,positive_t, negative_t,class_num,train_bs)/2

        if len(alignment_index) != 0:
            ctr_alignment_loss = torch.sum(utils.cosine_distance(batch_source_centroids[alignment_index], batch_target_centroids[alignment_index], cross=False))#/ctr_alignment_count
        # source_batch_FAT_Loss = torch.mean(torch.cat(source_loss,0), 0)/class_num
        # target_batch_FAT_Loss = torch.mean(torch.cat(target_loss,0),0)/class_num
        #
        # FAT_loss = source_batch_FAT_Loss.add(target_batch_FAT_Loss)
        ##
        # print("train loss: ", FAT_loss)
        # ctr_alignment_loss.grad_required =True
        # ctr_alignment_loss.retain_grad()
        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)
        softmax_out = nn.Softmax(dim=1)(outputs)
        if config['method'] == 'CDAN+E':
            entropy = loss.Entropy(softmax_out)
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy, network.calc_coeff(i), random_layer)
        elif config['method'] == 'CDAN':
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, None, None, random_layer)
        elif config['method'] == 'DANN':
            transfer_loss = loss.DANN(features, ad_net)
        else:
            raise ValueError('Method cannot be recognized.')
        classifier_loss = nn.CrossEntropyLoss()(outputs_source/(2), labels_source)


        total_loss = loss_params["trade_off"] * (transfer_loss) + classifier_loss
         if lamb >.1:
            cls_lamb = 1.0
        else:
            cls_lamb = 10*lamb

        # total_loss = lamb * ( FAT_loss + 10*ctr_alignment_loss) + (transfer_loss) + cls_lamb*classifier_loss
        # total_loss =transfer_loss + lamb * (FAT_loss + ctr_alignment_loss) + classifier_loss
        # FAT_loss.backward(retain_graph=True)
        # optimizer.zero_grad()
        total_loss.backward()
        optimizer.step()
        # my_lr_scheduler.step()
        if epoch % 5 ==0 and print_loss:
            print("fat loss ", FAT_loss)#.grad_fn, FAT_loss.requires_grad)
            print("ctr align:  ", ctr_alignment_loss)
            print("tot: ", total_loss)
            print("clss: ",classifier_loss)
            print("trs: ", transfer_loss)
            print("++++++++++++++++++++++++end of epoch++++++++++++++++++++")

            print_loss =False
def train(config):

    ## Define start time
    start_time = time.time()

    ## set pre-process
    prep_dict = {}
    prep_config = config["prep"]
    prep_dict["source"] = prep.image_train(**config["prep"]['params'])
    prep_dict["target"] = prep.image_train(**config["prep"]['params'])
    prep_dict["test"] = prep.image_test(**config["prep"]['params'])

    ## prepare data
    print("Preparing data", flush=True)
    dsets = {}
    dset_loaders = {}
    data_config = config["data"]
    train_bs = data_config["source"]["batch_size"]
    test_bs = data_config["test"]["batch_size"]
    root_folder = data_config["root_folder"]
    dsets["source"] = ImageList(open(osp.join(root_folder, data_config["source"]["list_path"])).readlines(), \
                                transform=prep_dict["source"], root_folder=root_folder, ratios=config["ratios_source"])
    dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, \
            shuffle=True, num_workers=4, drop_last=True)
    dsets["target"] = ImageList(open(osp.join(root_folder, data_config["target"]["list_path"])).readlines(), \
                                transform=prep_dict["target"], root_folder=root_folder, ratios=config["ratios_target"])
    dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
            shuffle=True, num_workers=4, drop_last=True)

    dsets["test"] = ImageList(open(
        osp.join(root_folder, data_config["test"]["list_path"])).readlines(),
                              transform=prep_dict["test"],
                              root_folder=root_folder,
                              ratios=config["ratios_test"])
    dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, \
                            shuffle=False, num_workers=4)

    test_path = os.path.join(root_folder, data_config["test"]["dataset_path"])
    if os.path.exists(test_path):
        print('Found existing dataset for test', flush=True)
        with open(test_path, 'rb') as f:
            [test_samples, test_labels] = pickle.load(f)
            test_labels = torch.LongTensor(test_labels).to(config["device"])
    else:
        print('Missing test dataset', flush=True)
        print('Building dataset for test and writing to {}'.format(test_path),
              flush=True)
        dset_test = ImageList(open(
            osp.join(root_folder,
                     data_config["test"]["list_path"])).readlines(),
                              transform=prep_dict["test"],
                              root_folder=root_folder,
                              ratios=config['ratios_test'])
        loaded_dset_test = LoadedImageList(dset_test)
        test_samples, test_labels = loaded_dset_test.samples.numpy(
        ), loaded_dset_test.targets.numpy()
        with open(test_path, 'wb') as f:
            pickle.dump([test_samples, test_labels], f)

    class_num = config["network"]["params"]["class_num"]
    test_samples, test_labels = sample_ratios(test_samples, test_labels,
                                              config['ratios_test'])

    # compute labels distribution on the source and target domain
    source_label_distribution = np.zeros((class_num))
    for img in dsets["source"].imgs:
        source_label_distribution[img[1]] += 1
    print("Total source samples: {}".format(np.sum(source_label_distribution)),
          flush=True)
    print("Source samples per class: {}".format(source_label_distribution),
          flush=True)
    source_label_distribution /= np.sum(source_label_distribution)
    print("Source label distribution: {}".format(source_label_distribution),
          flush=True)
    target_label_distribution = np.zeros((class_num))
    for img in dsets["target"].imgs:
        target_label_distribution[img[1]] += 1
    print("Total target samples: {}".format(np.sum(target_label_distribution)),
          flush=True)
    print("Target samples per class: {}".format(target_label_distribution),
          flush=True)
    target_label_distribution /= np.sum(target_label_distribution)
    print("Target label distribution: {}".format(target_label_distribution),
          flush=True)
    mixture = (source_label_distribution + target_label_distribution) / 2
    jsd = (scipy.stats.entropy(source_label_distribution, qk=mixture) \
            + scipy.stats.entropy(target_label_distribution, qk=mixture)) / 2
    print("JSD : {}".format(jsd), flush=True)

    test_label_distribution = np.zeros((class_num))
    for img in test_labels:
        test_label_distribution[int(img.item())] += 1
    print("Test samples per class: {}".format(test_label_distribution),
          flush=True)
    test_label_distribution /= np.sum(test_label_distribution)
    print("Test label distribution: {}".format(test_label_distribution),
          flush=True)
    write_list(config["out_wei_file"],
               [round(x, 4) for x in test_label_distribution])
    write_list(config["out_wei_file"],
               [round(x, 4) for x in source_label_distribution])
    write_list(config["out_wei_file"],
               [round(x, 4) for x in target_label_distribution])
    true_weights = torch.tensor(
        target_label_distribution / source_label_distribution,
        dtype=torch.float,
        requires_grad=False)[:, None].to(config["device"])
    print("True weights : {}".format(true_weights[:, 0].cpu().numpy()))
    config["out_wei_file"].write(str(jsd) + "\n")

    ## set base network
    net_config = config["network"]
    base_network = net_config["name"](**net_config["params"])
    base_network = base_network.to(config["device"])

    ## add additional network for some methods
    if config["loss"]["random"]:
        random_layer = network.RandomLayer(
            [base_network.output_num(), class_num],
            config["loss"]["random_dim"])
        ad_net = network.AdversarialNetwork(config["loss"]["random_dim"], 1024)
    else:
        random_layer = None
        if 'CDAN' in config['method']:
            ad_net = network.AdversarialNetwork(
                base_network.output_num() * class_num, 1024)
        else:
            ad_net = network.AdversarialNetwork(base_network.output_num(),
                                                1024)
    if config["loss"]["random"]:
        random_layer.to(config["device"])
    ad_net = ad_net.to(config["device"])
    parameter_list = ad_net.get_parameters() + base_network.get_parameters()
    parameter_list[-1]["lr_mult"] = config["lr_mult_im"]

    ## set optimizer
    optimizer_config = config["optimizer"]
    optimizer = optimizer_config["type"](parameter_list, \
                    **(optimizer_config["optim_params"]))
    param_lr = []
    for param_group in optimizer.param_groups:
        param_lr.append(param_group["lr"])
    schedule_param = optimizer_config["lr_param"]
    lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]

    # Maintain two quantities for the QP.
    cov_mat = torch.tensor(np.zeros((class_num, class_num), dtype=np.float32),
                           requires_grad=False).to(config["device"])
    pseudo_target_label = torch.tensor(np.zeros((class_num, 1),
                                                dtype=np.float32),
                                       requires_grad=False).to(
                                           config["device"])
    # Maintain one weight vector for BER.
    class_weights = torch.tensor(1.0 / source_label_distribution,
                                 dtype=torch.float,
                                 requires_grad=False).to(config["device"])

    gpus = config['gpu'].split(',')
    if len(gpus) > 1:
        ad_net = nn.DataParallel(ad_net, device_ids=[int(i) for i in gpus])
        base_network = nn.DataParallel(base_network,
                                       device_ids=[int(i) for i in gpus])

    ## train
    len_train_source = len(dset_loaders["source"])
    len_train_target = len(dset_loaders["target"])
    transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
    best_acc = 0.0

    print("Preparations done in {:.0f} seconds".format(time.time() -
                                                       start_time),
          flush=True)
    print("Starting training for {} iterations using method {}".format(
        config["num_iterations"], config['method']),
          flush=True)
    start_time_test = start_time = time.time()
    for i in range(config["num_iterations"]):
        if i % config["test_interval"] == config["test_interval"] - 1:
            base_network.train(False)
            temp_acc = image_classification_test_loaded(
                test_samples, test_labels, base_network)
            temp_model = nn.Sequential(base_network)
            if temp_acc > best_acc:
                best_acc = temp_acc
            log_str = "  iter: {:05d}, sec: {:.0f}, class: {:.5f}, da: {:.5f}, precision: {:.5f}".format(
                i,
                time.time() - start_time_test, classifier_loss_value,
                transfer_loss_value, temp_acc)
            config["out_log_file"].write(log_str + "\n")
            config["out_log_file"].flush()
            print(log_str, flush=True)
            if 'IW' in config['method']:
                current_weights = [
                    round(x, 4) for x in
                    base_network.im_weights.data.cpu().numpy().flatten()
                ]
                # write_list(config["out_wei_file"], current_weights)
                print(current_weights, flush=True)
            start_time_test = time.time()
        if i % 500 == -1:
            print("{} iterations in {} seconds".format(
                i,
                time.time() - start_time),
                  flush=True)

        loss_params = config["loss"]
        ## train one iter
        base_network.train(True)
        ad_net.train(True)
        optimizer = lr_scheduler(optimizer, i, **schedule_param)
        optimizer.zero_grad()

        t = time.time()
        if i % len_train_source == 0:
            iter_source = iter(dset_loaders["source"])
        if i % len_train_target == 0:
            iter_target = iter(dset_loaders["target"])
        inputs_source, label_source = iter_source.next()
        inputs_target, _ = iter_target.next()
        inputs_source, inputs_target, label_source = inputs_source.to(
            config["device"]), inputs_target.to(
                config["device"]), label_source.to(config["device"])
        features_source, outputs_source = base_network(inputs_source)
        features_target, outputs_target = base_network(inputs_target)
        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)
        softmax_out = nn.Softmax(dim=1)(outputs)

        if 'IW' in config['method']:
            ys_onehot = torch.zeros(train_bs, class_num).to(config["device"])
            ys_onehot.scatter_(1, label_source.view(-1, 1), 1)

            # Compute weights on source data.
            if 'ORACLE' in config['method']:
                weights = torch.mm(ys_onehot, true_weights)
            else:
                weights = torch.mm(ys_onehot, base_network.im_weights)

            source_preds, target_preds = outputs[:train_bs], outputs[train_bs:]
            # Compute the aggregated distribution of pseudo-label on the target domain.
            pseudo_target_label += torch.sum(F.softmax(target_preds, dim=1),
                                             dim=0).view(-1, 1).detach()
            # Update the covariance matrix on the source domain as well.
            cov_mat += torch.mm(
                F.softmax(source_preds, dim=1).transpose(1, 0),
                ys_onehot).detach()

        if config['method'] == 'CDAN-E':
            classifier_loss = nn.CrossEntropyLoss()(outputs_source,
                                                    label_source)
            entropy = loss.Entropy(softmax_out)
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy,
                                      network.calc_coeff(i), random_layer)
            total_loss = loss_params["trade_off"] * \
                transfer_loss + classifier_loss

        elif 'IWCDAN-E' in config['method']:

            classifier_loss = torch.mean(
                nn.CrossEntropyLoss(weight=class_weights, reduction='none')
                (outputs_source, label_source) * weights) / class_num

            entropy = loss.Entropy(softmax_out)
            transfer_loss = loss.CDAN([features, softmax_out],
                                      ad_net,
                                      entropy,
                                      network.calc_coeff(i),
                                      random_layer,
                                      weights=weights,
                                      device=config["device"])
            total_loss = loss_params["trade_off"] * \
                transfer_loss + classifier_loss

        elif config['method'] == 'CDAN':

            classifier_loss = nn.CrossEntropyLoss()(outputs_source,
                                                    label_source)
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, None,
                                      None, random_layer)
            total_loss = loss_params[
                "trade_off"] * transfer_loss + classifier_loss

        elif 'IWCDAN' in config['method']:

            classifier_loss = torch.mean(
                nn.CrossEntropyLoss(weight=class_weights, reduction='none')
                (outputs_source, label_source) * weights) / class_num

            transfer_loss = loss.CDAN([features, softmax_out],
                                      ad_net,
                                      None,
                                      None,
                                      random_layer,
                                      weights=weights)
            total_loss = loss_params["trade_off"] * \
                transfer_loss + classifier_loss

        elif config['method'] == 'DANN':
            classifier_loss = nn.CrossEntropyLoss()(outputs_source,
                                                    label_source)
            transfer_loss = loss.DANN(features, ad_net, config["device"])
            total_loss = loss_params["trade_off"] * \
                transfer_loss + classifier_loss

        elif 'IWDAN' in config['method']:

            classifier_loss = torch.mean(
                nn.CrossEntropyLoss(weight=class_weights, reduction='none')
                (outputs_source, label_source) * weights) / class_num

            transfer_loss = loss.IWDAN(features, ad_net, weights)
            total_loss = loss_params["trade_off"] * \
                transfer_loss + classifier_loss

        elif config['method'] == 'NANN':
            classifier_loss = nn.CrossEntropyLoss()(outputs_source,
                                                    label_source)
            total_loss = classifier_loss
        else:
            raise ValueError('Method cannot be recognized.')

        total_loss.backward()
        optimizer.step()

        transfer_loss_value = 0 if config[
            'method'] == 'NANN' else transfer_loss.item()
        classifier_loss_value = classifier_loss.item()
        total_loss_value = transfer_loss_value + classifier_loss_value

        if ('IW' in config['method']
            ) and i % (config["dataset_mult_iw"] * len_train_source
                       ) == config["dataset_mult_iw"] * len_train_source - 1:

            pseudo_target_label /= train_bs * \
                len_train_source * config["dataset_mult_iw"]
            cov_mat /= train_bs * len_train_source * config["dataset_mult_iw"]
            print(i, np.sum(cov_mat.cpu().detach().numpy()),
                  train_bs * len_train_source)

            # Recompute the importance weight by solving a QP.
            base_network.im_weights_update(
                source_label_distribution,
                pseudo_target_label.cpu().detach().numpy(),
                cov_mat.cpu().detach().numpy(), config["device"])
            current_weights = [
                round(x, 4)
                for x in base_network.im_weights.data.cpu().numpy().flatten()
            ]
            write_list(config["out_wei_file"], [
                np.linalg.norm(current_weights -
                               true_weights.cpu().numpy().flatten())
            ] + current_weights)
            print(
                np.linalg.norm(current_weights -
                               true_weights.cpu().numpy().flatten()),
                current_weights)

            cov_mat[:] = 0.0
            pseudo_target_label[:] = 0.0

    return best_acc
def train(args, model, ad_net, random_layer, train_loader, train_loader1, optimizer, optimizer_ad, epoch, start_epoch, method,
          D_s, D_t, G_s2t, G_t2s, criterion_Sem, criterion_GAN, criterion_cycle, criterion_identity, optimizer_G,
          optimizer_D_t, optimizer_D_s,
          classifier1, classifier1_optim, fake_S_buffer, fake_T_buffer):
    model.train()
    len_source = len(train_loader)
    len_target = len(train_loader1)
    if len_source > len_target:
        num_iter = len_source
    else:
        num_iter = len_target
    
    for batch_idx in range(num_iter):
        if batch_idx % len_source == 0:
            iter_source = iter(train_loader)    
        if batch_idx % len_target == 0:
            iter_target = iter(train_loader1)
        data_source, label_source = iter_source.next()
        # data_source, label_source = data_source.cuda(), label_source.cuda()
        data_target, label_target = iter_target.next()
        # data_target = data_target.cuda()
        optimizer.zero_grad()
        optimizer_ad.zero_grad()

        features_source, outputs_source = model(data_source)
        features_target, outputs_target = model(data_target)
        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)

        loss = nn.CrossEntropyLoss()(outputs.narrow(0, 0, data_source.size(0)), label_source)
        softmax_output = nn.Softmax(dim=1)(outputs)

        output1 = classifier1(features)
        softmax_output1 = nn.Softmax(dim=1)(output1)
        softmax_output = (1 - args.cla_plus_weight) * softmax_output + args.cla_plus_weight * softmax_output1

        if epoch > start_epoch:
            if method == 'CDAN-E':
                entropy = loss_func.Entropy(softmax_output)
                loss += loss_func.CDAN([features, softmax_output], ad_net, entropy, network.calc_coeff(num_iter*(epoch-start_epoch)+batch_idx), random_layer)
            elif method == 'CDAN':
                loss += loss_func.CDAN([features, softmax_output], ad_net, None, None, random_layer)
            elif method == 'DANN':
                loss += loss_func.DANN(features, ad_net)
            else:
                raise ValueError('Method cannot be recognized.')
        # Cycle
        num_feature = features.size(0)
        # =================train discriminator T
        real_label = Variable(torch.ones(num_feature))
        # real_label = Variable(torch.ones(num_feature)).cuda()
        fake_label = Variable(torch.zeros(num_feature))
        # fake_label = Variable(torch.zeros(num_feature)).cuda()

        # 训练生成器
        optimizer_G.zero_grad()

        # Identity loss
        same_t = G_s2t(features_target)
        loss_identity_t = criterion_identity(same_t, features_target)

        same_s = G_t2s(features_source)
        loss_identity_s = criterion_identity(same_s, features_source)

        # Gan loss
        fake_t = G_s2t(features_source)
        pred_fake = D_t(fake_t)
        loss_G_s2t = criterion_GAN(pred_fake, label_source.float())

        fake_s = G_t2s(features_target)
        pred_fake = D_s(fake_s)
        loss_G_t2s = criterion_GAN(pred_fake, label_source.float())

        # cycle loss
        recovered_s = G_t2s(fake_t)
        loss_cycle_sts = criterion_cycle(recovered_s, features_source)

        recovered_t = G_s2t(fake_s)
        loss_cycle_tst = criterion_cycle(recovered_t, features_target)

        # sem loss
        pred_recovered_s = model.classifier(recovered_s)
        pred_fake_t = model.classifier(fake_t)
        loss_sem_t2s = criterion_Sem(pred_recovered_s, pred_fake_t)

        pred_recovered_t = model.classifier(recovered_t)
        pred_fake_s = model.classifier(fake_s)
        loss_sem_s2t = criterion_Sem(pred_recovered_t, pred_fake_s)

        loss_cycle = loss_cycle_tst + loss_cycle_sts
        weight_in_loss_g = args.weight_in_loss_g.split(',')
        loss_G = float(weight_in_loss_g[0]) * (loss_identity_s + loss_identity_t) + \
                 float(weight_in_loss_g[1]) * (loss_G_s2t + loss_G_t2s) + \
                 float(weight_in_loss_g[2]) * loss_cycle + \
                 float(weight_in_loss_g[3]) * (loss_sem_s2t + loss_sem_t2s)

        # 训练softmax分类器
        outputs_fake = classifier1(fake_t.detach())
        # 分类器优化
        classifier_loss1 = nn.CrossEntropyLoss()(outputs_fake, label_source)
        classifier1_optim.zero_grad()
        classifier_loss1.backward()
        classifier1_optim.step()

        total_loss = loss + args.cyc_loss_weight * loss_G
        total_loss.backward()
        optimizer.step()
        optimizer_G.step()

        ###### Discriminator S ######
        optimizer_D_s.zero_grad()

        # Real loss
        pred_real = D_s(features_source.detach())
        loss_D_real = criterion_GAN(pred_real, real_label)

        # Fake loss
        fake_s = fake_S_buffer.push_and_pop(fake_s)
        pred_fake = D_s(fake_s.detach())
        loss_D_fake = criterion_GAN(pred_fake, fake_label)

        # Total loss
        loss_D_s = loss_D_real + loss_D_fake
        loss_D_s.backward()

        optimizer_D_s.step()
        ###################################

        ###### Discriminator t ######
        optimizer_D_t.zero_grad()

        # Real loss
        pred_real = D_t(features_target.detach())
        loss_D_real = criterion_GAN(pred_real, real_label)

        # Fake loss
        fake_t = fake_T_buffer.push_and_pop(fake_t)
        pred_fake = D_t(fake_t.detach())
        loss_D_fake = criterion_GAN(pred_fake, fake_label)

        # Total loss
        loss_D_t = loss_D_real + loss_D_fake
        loss_D_t.backward()
        optimizer_D_t.step()

        if epoch > start_epoch:
            optimizer_ad.step()
        if (batch_idx + epoch * num_iter) % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}\tLoss+G: {:.6f}'.format(
                epoch, batch_idx * args.batch_size, num_iter * args.batch_size,
                       100. * batch_idx / num_iter, loss.item(), total_loss.item()))
示例#16
0
def train(config):
    ## set pre-process
    prep_dict = {}
    prep_config = config["prep"]
    prep_dict["source"] = prep.image_train(**config["prep"]['params'])
    prep_dict["target"] = prep.image_train(**config["prep"]['params'])
    if prep_config["test_10crop"]:
        prep_dict["test"] = prep.image_test_10crop(**config["prep"]['params'])
    else:
        prep_dict["test"] = prep.image_test(**config["prep"]['params'])

    ## prepare data
    dsets = {}
    dset_loaders = {}
    data_config = config["data"]
    train_bs = data_config["source"]["batch_size"]
    test_bs = data_config["test"]["batch_size"]
    dsets["source"] = ImageList(open(data_config["source"]["list_path"]).readlines(), \
                                transform=prep_dict["source"])
    dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, \
                                        shuffle=True, num_workers=4, drop_last=True)
    dsets["target"] = ImageList(open(data_config["target"]["list_path"]).readlines(), \
                                transform=prep_dict["target"])
    dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
                                        shuffle=True, num_workers=4, drop_last=True)

    if prep_config["test_10crop"]:
        for i in range(10):
            dsets["test"] = [ImageList(open(data_config["test"]["list_path"]).readlines(), \
                                       transform=prep_dict["test"][i]) for i in range(10)]
            dset_loaders["test"] = [DataLoader(dset, batch_size=test_bs, \
                                               shuffle=False, num_workers=4) for dset in dsets['test']]
    else:
        dsets["test"] = ImageList(open(data_config["test"]["list_path"]).readlines(), \
                                  transform=prep_dict["test"])
        dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, \
                                          shuffle=False, num_workers=4)

    class_num = config["network"]["params"]["class_num"]
    crit = LabelSmoothingLoss(smoothing=0.05, classes=class_num)#标签平滑操作

    ## set base network
    net_config = config["network"]
    base_network = net_config["name"](**net_config["params"])
    base_network = base_network.cuda()  # 加载基础网络结构

    ## add additional network for some methods
    if config["loss"]["random"]:
        random_layer = network.RandomLayer([base_network.output_num(), class_num], config["loss"]["random_dim"])
        ad_net = network.AdversarialNetwork(config["loss"]["random_dim"], 1024)
    else:
        random_layer = None
        ad_net = network.AdversarialNetwork(base_network.output_num() * class_num, 1024)  # 对抗网络结构
    if config["loss"]["random"]:
        random_layer.cuda()
    ad_net = ad_net.cuda()
    parameter_list = base_network.get_parameters() + ad_net.get_parameters()

    ## set optimizer
    optimizer_config = config["optimizer"]
    optimizer = optimizer_config["type"](parameter_list, \
                                         **(optimizer_config["optim_params"]))

    #中心损失函数
    criterion_centor=CenterLoss(num_classes=class_num,feat_dim=256,use_gpu=True)
    optimizer_centerloss=torch.optim.SGD(criterion_centor.parameters(),lr=config['lr'])

    param_lr = []
    for param_group in optimizer.param_groups:
        param_lr.append(param_group["lr"])
    schedule_param = optimizer_config["lr_param"]
    lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]

    gpus = config['gpu'].split(',')
    if len(gpus) > 1:
        ad_net = nn.DataParallel(ad_net, device_ids=[int(i) for i in gpus])
        base_network = nn.DataParallel(base_network, device_ids=[int(i) for i in gpus])

    ## train
    len_train_source = len(dset_loaders["source"])
    len_train_target = len(dset_loaders["target"])
    transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
    best_acc = 0.0
    start_time = time.time()
    for i in range(config["num_iterations"]):

        if i % config["test_interval"] == config["test_interval"] - 1:
            # 在这里进行测试的工作
            base_network.train(False)
            temp_acc = image_classification_test(dset_loaders, \
                                                 base_network, test_10crop=prep_config["test_10crop"])
            temp_model = nn.Sequential(base_network)
            if temp_acc > best_acc:
                best_acc = temp_acc
                best_model = temp_model
            log_str = "iter: {:05d}, precision: {:.5f}".format(i, temp_acc)
            config["out_file"].write(log_str + "\n")
            config["out_file"].flush()
            print(log_str)
            end_time = time.time()
            print('iter {} cost time {:.4f} sec.'.format(i, end_time - start_time))  # 打印时间间隔
            start_time = time.time()

        if i % config["snapshot_interval"] == 0:
            torch.save(nn.Sequential(base_network), osp.join(config["output_path"], \
                                                             "iter_{:05d}_model.pth.tar".format(i)))

        loss_params = config["loss"]

        ## train one iter
        base_network.train(True)  # 训练模式
        ad_net.train(True)

        optimizer = lr_scheduler(optimizer, i, **schedule_param)
        # optimizer_centerloss=lr_scheduler(optimizer_centerloss, i, **schedule_param)

        optimizer.zero_grad()
        optimizer_centerloss.zero_grad()

        if i % len_train_source == 0:
            iter_source = iter(dset_loaders["source"])
        if i % len_train_target == 0:
            iter_target = iter(dset_loaders["target"])
        inputs_source, labels_source = iter_source.next()
        inputs_target, labels_target = iter_target.next()
        inputs_source, inputs_target, labels_source = inputs_source.cuda(), inputs_target.cuda(), labels_source.cuda()
        features_source, outputs_source = base_network(inputs_source)
        features_target, outputs_target = base_network(inputs_target)
        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)
        softmax_out = nn.Softmax(dim=1)(outputs)
        if config['method'] == 'CDAN+E':
            entropy = loss.Entropy(softmax_out)
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy, network.calc_coeff(i), random_layer)
        elif config['method'] == 'CDAN':
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, None, None, random_layer)
        elif config['method'] == 'DANN':
            transfer_loss = loss.DANN(features, ad_net)
        else:
            raise ValueError('Method cannot be recognized.')
        # classifier_loss = nn.CrossEntropyLoss()(outputs_source, labels_source)  # 源域的分类损失
        classifier_loss = crit(outputs_source, labels_source)  # 源域的分类损失,标签平滑操作

        # 目标域的熵正则化操作
        outputs_target=outputs[len(inputs_source):,:]
        t_logit = outputs_target
        t_prob = torch.softmax(t_logit,dim=1)
        t_entropy_loss = get_entropy_loss(t_prob)  # 计算目标域的熵的损失
        entropy_loss = 0.05 * (t_entropy_loss)

        # 计算中心损失函数
        loss_centor = criterion_centor(features_source, labels_source)  # 中心损失计算

        total_loss = loss_params["trade_off"] * transfer_loss + classifier_loss + config['centor_w']*loss_centor
        if i % config["test_interval"] == config["test_interval"] - 1:
            print('total loss: {:.4f}, transfer loss: {:.4f}, classifier loss: {:.4f}, centor loss: {:.4f}'.format(
                total_loss.item(),transfer_loss.item(),classifier_loss.item(),config['centor_w']*loss_centor.item()
            ))
        total_loss.backward()
        optimizer.step()
        # by doing so, weight_cent would not impact on the learning of centers
        for param in criterion_centor.parameters():
            param.grad.data *= (1. / config['centor_w'])
        optimizer_centerloss.step()

    torch.save(best_model, osp.join(config["output_path"], "best_model.pth.tar"))
    return best_acc
示例#17
0
def train(config):
    ## set pre-process
    prep_dict = {}
    prep_config = config["prep"]
    prep_dict["source"] = prep.image_train(**config["prep"]['params'])
    prep_dict["target"] = prep.image_train(**config["prep"]['params'])
    if prep_config["test_10crop"]:
        prep_dict["test"] = prep.image_test_10crop(**config["prep"]['params'])
    else:
        prep_dict["test"] = prep.image_test(**config["prep"]['params'])

    ## prepare data
    dsets = {}
    dset_loaders = {}
    data_config = config["data"]
    train_bs = data_config["source"]["batch_size"]
    test_bs = data_config["test"]["batch_size"]
    dsets["source"] = ImageList(open(data_config["source"]["list_path"]).readlines(), \
                                transform=prep_dict["source"])
    dset_loaders["source"] = DataLoader(dsets["source"], batch_size=train_bs, \
            shuffle=True, num_workers=4, drop_last=True)
    dsets["target"] = ImageList(open(data_config["target"]["list_path"]).readlines(), \
                                transform=prep_dict["target"])
    dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, \
            shuffle=True, num_workers=4, drop_last=True)

    #     if prep_config["test_10crop"]:
    #         for i in range(10):
    #             dsets["test"] = [ImageList(open(data_config["test"]["list_path"]).readlines(), \
    #                                 transform=prep_dict["test"][i]) for i in range(10)]
    #             dset_loaders["test"] = [DataLoader(dset, batch_size=test_bs, \
    #                                 shuffle=False, num_workers=4) for dset in dsets['test']]
    #     else:
    #         dsets["test"] = ImageList(open(data_config["test"]["list_path"]).readlines(), \
    #                                 transform=prep_dict["test"])
    #         dset_loaders["test"] = DataLoader(dsets["test"], batch_size=test_bs, \
    #                                 shuffle=False, num_workers=4)

    class_num = config["network"]["params"]["class_num"]

    ## set base network
    net_config = config["network"]
    base_network = net_config["name"](**net_config["params"])
    base_network = base_network.cuda()

    ## add additional network for some methods
    if config["loss"]["random"]:
        random_layer = network.RandomLayer(
            [base_network.output_num(), class_num],
            config["loss"]["random_dim"])
        ad_net = network.AdversarialNetwork(config["loss"]["random_dim"], 1024)
    else:
        random_layer = None
        ad_net = network.AdversarialNetwork(
            base_network.output_num() * class_num, 1024)
    if config["loss"]["random"]:
        random_layer.cuda()
    ad_net = ad_net.cuda()
    parameter_list = base_network.get_parameters() + ad_net.get_parameters()

    ## set optimizer
    optimizer_config = config["optimizer"]
    optimizer = optimizer_config["type"](parameter_list, \
                    **(optimizer_config["optim_params"]))
    param_lr = []
    for param_group in optimizer.param_groups:
        param_lr.append(param_group["lr"])
    schedule_param = optimizer_config["lr_param"]
    lr_scheduler = lr_schedule.schedule_dict[optimizer_config["lr_type"]]

    gpus = config['gpu'].split(',')
    if len(gpus) > 1:
        ad_net = nn.DataParallel(ad_net, device_ids=[int(i) for i in gpus])
        base_network = nn.DataParallel(base_network,
                                       device_ids=[int(i) for i in gpus])

    ## train
    len_train_source = len(dset_loaders["source"])
    len_train_target = len(dset_loaders["target"])
    transfer_loss_value = classifier_loss_value = total_loss_value = 0.0
    best_acc = 0.0
    for i in range(config["num_iterations"]):
        #         if i % config["test_interval"] == config["test_interval"] - 1:
        #             base_network.train(False)
        #             temp_acc = image_classification_test(dset_loaders, \
        #                 base_network, test_10crop=prep_config["test_10crop"])
        #             temp_model = nn.Sequential(base_network)
        #             if temp_acc > best_acc:
        #                 best_acc = temp_acc
        #                 best_model = temp_model
        #             log_str = "iter: {:05d}, precision: {:.5f}".format(i, temp_acc)
        #             config["out_file"].write(log_str+"\n")
        #             config["out_file"].flush()
        #             print(log_str)
        if i % config["snapshot_interval"] == 0:
            torch.save(nn.Sequential(base_network), osp.join(config["output_path"], \
                "iter_{:05d}_model.pth.tar".format(i)))

        loss_params = config["loss"]
        ## train one iter
        base_network.train(True)
        ad_net.train(True)
        optimizer = lr_scheduler(optimizer, i, **schedule_param)
        optimizer.zero_grad()
        if i % len_train_source == 0:
            iter_source = iter(dset_loaders["source"])
        if i % len_train_target == 0:
            iter_target = iter(dset_loaders["target"])
        inputs_source, labels_source = iter_source.next()
        inputs_target, labels_target = iter_target.next()
        inputs_source, inputs_target, labels_source = inputs_source.cuda(
        ), inputs_target.cuda(), labels_source.cuda()
        features_source, outputs_source = base_network(inputs_source)
        features_target, outputs_target = base_network(inputs_target)
        features = torch.cat((features_source, features_target), dim=0)
        outputs = torch.cat((outputs_source, outputs_target), dim=0)
        softmax_out = nn.Softmax(dim=1)(outputs)
        if config['method'] == 'CDAN+E':
            entropy = loss.Entropy(softmax_out)
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, entropy,
                                      network.calc_coeff(i), random_layer)
        elif config['method'] == 'CDAN':
            transfer_loss = loss.CDAN([features, softmax_out], ad_net, None,
                                      None, random_layer)
        elif config['method'] == 'DANN':
            transfer_loss = loss.DANN(features, ad_net)
        else:
            raise ValueError('Method cannot be recognized.')
        classifier_loss = nn.CrossEntropyLoss()(outputs_source, labels_source)
        if i % 10 == 0:
            print('iter: ', i, 'classifier_loss: ', classifier_loss.data,
                  'transfer_loss: ', transfer_loss.data)
        total_loss = loss_params["trade_off"] * transfer_loss + classifier_loss
        total_loss.backward()
        optimizer.step()
    torch.save(best_model, osp.join(config["output_path"],
                                    "best_model.pth.tar"))
    return best_acc
示例#18
0
def train(args,
          i,
          model,
          ad_net,
          ad_w_net,
          train_loader,
          train_loader1,
          optimizer,
          optimizer_ad,
          optimizer_ad_w,
          epoch,
          start_epoch,
          method,
          random_layer=None):
    model.train()
    len_source = len(train_loader)
    len_target = len(train_loader1)
    if len_source > len_target:
        num_iter = len_source
    else:
        num_iter = len_target

    for batch_idx in range(num_iter):
        if batch_idx % len_source == 0:
            iter_source = iter(train_loader)
        if batch_idx % len_target == 0:
            iter_target = iter(train_loader1)
        data_source, label_source = iter_source.next()
        data_source, label_source = data_source.cuda(), label_source.cuda()
        data_target, label_target = iter_target.next()
        data_target = data_target.cuda()

        optimizer.zero_grad()
        optimizer_ad.zero_grad()
        optimizer_ad_w.zero_grad()

        feature, output = model(torch.cat((data_source, data_target), 0))

        train_progress = (epoch - 1 + 1. *
                          (batch_idx + 1) / num_iter) / args.epochs

        temp = loss_func.calc_temp(train_progress,
                                   alpha=args.alpha,
                                   max_iter=1.,
                                   temp_max=args.temp_max)
        w_s, w_t = loss_func.w_from_ad(feature,
                                       ad_w_net,
                                       temp=temp,
                                       weight=(args.weight == 1))

        w = torch.cat([w_s, w_t], dim=0)

        loss = (w_s.detach() * nn.CrossEntropyLoss(reduction='none')(
            output.narrow(0, 0, data_source.size(0)), label_source)).mean()
        softmax_output = nn.Softmax(dim=1)(output)

        if epoch > start_epoch:
            if method == 'CDAN':
                loss += loss_func.CDAN([feature, softmax_output],
                                       ad_net,
                                       w_s=w_s,
                                       w_t=w_t,
                                       random_layer=random_layer)
            elif method == 'DANN':
                loss += loss_func.DANN(feature,
                                       ad_net,
                                       w_s=w_s,
                                       w_t=w_t,
                                       hook=True)
            elif method == 'Y_DAN':
                loss += loss_func.Y_DAN([feature, softmax_output],
                                        ad_net,
                                        w_s=w_s,
                                        w_t=w_t)
            else:
                raise ValueError('Method cannot be recognized.')
        loss.backward(retain_graph=True)
        ad_w_net.zero_grad()
        optimizer.step()
        if epoch > start_epoch:
            optimizer_ad.step()

        invariance_loss = loss_func.DANN(feature.detach(),
                                         ad_w_net,
                                         hook=False)
        invariance_loss.backward()
        optimizer_ad_w.step()

        if (batch_idx + epoch * num_iter) % args.log_interval == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * args.batch_size, num_iter * args.batch_size,
                100. * batch_idx / num_iter, loss.item()))