示例#1
0
    def __init__(self, net, lr, name, evalmode=False):
        self.model = net
        self.cuda_net = torch.nn.DataParallel(self.model,
                                              device_ids=range(
                                                  torch.cuda.device_count()))
        #self.optimizer = torch.optim.RMSprop(params=self.net.parameters(), lr=lr)
        if evalmode:
            for i in self.model.modules():
                if isinstance(i, nn.BatchNorm2d):
                    i.eval()
        self.isTrain = True
        self.num_classes = 1
        self.tensorborad_dir = "log/tensorboard_log/"
        self.model_dir = "weights/"
        # self.lr = 0.007
        self.lr = lr
        self.lr_power = 0.9
        self.momentum = 0.9
        self.wd = 0.0001  # weight decay
        self.accum_steps = 1
        self.iterSize = 10
        self.net_name = name

        self.which_epoch = 0

        # self.device =
        if self.isTrain:
            # self.criterionSeg = torch.nn.CrossEntropyLoss(ignore_index=255).cuda() # maybe edit
            # Change the crossentropyloss to BCEloss
            # self.criterionSeg = torch.nn.BCELoss().cuda()
            # self.criterionSeg = loss_func().cuda()
            self.criterionSeg = dice_bce_loss().cuda()
            self.optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad,
                                                    self.model.parameters()),
                                             lr=self.lr,
                                             momentum=self.momentum,
                                             weight_decay=self.wd)
            params_w = list(self.model.decoder.dupsample.conv_w.parameters())
            params_p = list(self.model.decoder.dupsample.conv_p.parameters())
            self.optimizer_w = torch.optim.SGD(params_w + params_p,
                                               lr=self.lr,
                                               momentum=self.momentum)
            self.old_lr = self.lr
            self.averageloss = []

            self.writer = SummaryWriter(self.tensorborad_dir)
            self.counter = 0

        self.model.cuda()

        self.normweightgrad = 0.
示例#2
0
 def __init__(self, net, lr=2e-4, evalmode=False, batchsize=1):
     self.net = net().cuda()
     self.net = torch.nn.DataParallel(self.net,
                                      device_ids=range(
                                          torch.cuda.device_count()))
     self.optimizer = torch.optim.Adam(params=self.net.parameters(), lr=lr)
     #self.optimizer = torch.optim.RMSprop(params=self.net.parameters(), lr=lr)
     self.log_vars = nn.Parameter(torch.zeros((2))).cuda()
     self.segloss = dice_bce_loss()
     self.edgeloss = edge_loss()
     # self.Dualloss=DualTaskLoss()
     # self.edgeattention=ImageBasedCrossEntropyLoss2d(1)
     self.old_lr = lr
     # self.confusion_matrix = np.zeros((2,) * 2)
     self.batchsize = batchsize
     # self.evaluator = Evaluator(2)
     if evalmode:
         for i in self.net.modules():
             if isinstance(i, nn.BatchNorm2d):
                 i.eval()
示例#3
0
    run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0

save_dir = os.path.join(save_dir_root, 'run')

# Network definition
# if backbone == 'xception':
#     net = deeplab_xception.DeepLabv3_plus(nInputChannels=3, n_classes=12, os=16, pretrained=False)
# elif backbone == 'resnet':
#     net = deeplab_resnet.DeepLabv3_plus(nInputChannels=3, n_classes=12, os=16, pretrained=False)
# else:
#     raise NotImplementedError

net = BRU_net.BRU_net(n_classes=12)

modelName = 'deeplabv3plus-' + backbone + '-voc'
criterion = loss.dice_bce_loss()
# criterion = loss.FocalLoss(gamma=2)

print("Backbone network is {}".format(backbone))

if resume_epoch == 0:
    print("Training deeplabv3+ from scratch...")
else:
    print("Initializing weights from: {}...".format(
        os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth')))
    net.load_state_dict(
        torch.load(os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth'),
                   map_location=lambda storage, loc: storage)) # Load all tensors onto the CPU

if gpu_id >= 0:
    torch.cuda.set_device(device=gpu_id)
示例#4
0
def fpn_Net_Train(train_i=0):
    NAME = 'fold'+str(train_i+1)+'3fpn-Net'
    model = FPN_Net(1, 1).cuda()
    model = torch.nn.DataParallel(model, device_ids=range(torch.cuda.device_count()))
    # model = FPN_Net(1, 1)
    # print(model)
    folds = data2()
    batch_size = 4
    (x_train, y_train), (x_test, y_test) = load_numpy(folds, train_i)
    dataset = torch.utils.data.TensorDataset(x_train, y_train)
    data_loader = torch.utils.data.DataLoader(
        dataset,
        batch_size=batch_size,
        shuffle=True,
        num_workers=4)
    mylog = open('logs/' + NAME + '.log', 'w')
    tic = time()
    no_optim = 0
    lr = 2e-4
    total_epoch=300
    train_epoch_best_loss=10000
    best_test_score = 0
    decay_factor = 1.5
    optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
    loss_com = dice_bce_loss()

    for epoch in range(1, total_epoch + 1):
        data_loader_iter = iter(data_loader)
        train_epoch_loss = 0
        train_score = 0
        for img, mask in data_loader_iter:
            img = Variable(img.cuda(), volatile=False)
            mask = Variable(mask.cuda(), volatile=False)
            optimizer.zero_grad()
            pre = model.forward(img)
            loss = loss_com(mask, pre)
            loss.backward()
            optimizer.step()
            train_epoch_loss += loss
            train_score_b = dice_coeff(mask, pre, False)
            train_score += train_score_b*batch_size
        train_score /= x_train.size(0)
        train_epoch_loss /= len(data_loader_iter)

        test_img = Variable(x_test.cuda(), volatile=False)
        test_mask = Variable(y_test.cuda(), volatile=False)
        pre_test = model.forward(test_img)
        loss_test = loss_com(test_mask, pre_test)
        test_score = dice_coeff(test_mask, pre_test, False)

        if test_score > best_test_score:
            print('1. the dice score up to ', test_score, 'from ', best_test_score, 'saving the model', file=mylog, flush=True)
            print('1. the dice score up to ', test_score, 'from ', best_test_score, 'saving the model')
            best_test_score = test_score
            solver.save('./weights/' + NAME + '.th')

        print('********', file=mylog, flush=True)
        print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:', train_epoch_loss, 'train_score:', train_score, file=mylog, flush=True)
        print('test_loss:', loss_test, 'test_dice_score: ', test_score, 'best_score is ', best_test_score, file=mylog, flush=True)

        print('********')
        print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:', train_epoch_loss, 'train_score:', train_score)
        print('test_loss:', loss_test, 'test_dice_score: ', test_score, 'best_score is ', best_test_score)

        if train_epoch_loss >= train_epoch_best_loss:
            no_optim += 1
        else:
            no_optim = 0
            train_epoch_best_loss = train_epoch_loss

        if no_optim > Constants.NUM_UPDATE_LR:
            if solver.old_lr < 5e-7:
                break
            if solver.old_lr > 5e-5:
                model.load_state_dict(torch.load('./weights/' + NAME + '.th'))
                lr /= decay_factor
                for param_group in optimizer.param_groups:
                    param_group['lr'] = lr

    print('Finish!', file=mylog, flush=True)
    print('Finish!')
    mylog.close()
示例#5
0
def train_net(
    net,
    epochs=5,
    batch_size=1,
    lr=0.001,
    save_cp=True,
    gpu=False,
):

    dir_img = 'img/'
    dir_label = 'label/'
    dir_checkpoint = 'checkpoints/'

    dataset = SSDataset(dir_img, dir_label)[0]

    train_dataset = [dataset[i] for i in range(int(len(dataset) * 0.8))]
    test_dataset = [dataset[i] for i in range(int(len(dataset) * 0.2))]

    print('''
    Starting training:
        Epochs: {}
        Batch size: {}
        Learning rate: {}
        Training size: {}
        Validation size: {}
        Checkpoints: {}
        CUDA: {}
    '''.format(epochs, batch_size, lr, len(train_dataset), len(test_dataset),
               str(save_cp), str(gpu)))

    optimizer = optim.SGD(net.parameters(),
                          lr=lr,
                          momentum=0.9,
                          weight_decay=0.0005)
    criterion = dice_bce_loss()
    USE_CUDA = torch.cuda.is_available()
    device = torch.device("cuda:0" if USE_CUDA else "cpu")
    loss_graph = []
    x = []
    count = 0
    for epoch in range(epochs):
        print('Starting epoch {}/{}.'.format(epoch + 1, epochs))
        net.train()
        epoch_loss = 0
        batch = utils.batch(train_dataset, batch_size)

        for o in range(len(batch)):

            img = np.array(batch[o][0]).astype(np.float32)
            label = np.array(batch[o][1])

            img = torch.from_numpy(img)
            label = torch.from_numpy(label)

            img = img.permute(0, 3, 1, 2)
            #label = label.reshape(batch_size, 1, 512, 512)

            if gpu:
                img = img.cuda()
                label = label.cuda()

            #net = torch.nn.DataParallel(net).cuda()
            net.to(device)
            output = net(img)

            output_final = output.view(-1).float()
            label_final = label.view(-1).float()
            #print(label_final)

            loss = criterion(output_final, label_final)
            epoch_loss = epoch_loss + loss.item()

            optimizer.zero_grad()
            with torch.autograd.set_detect_anomaly(True):
                loss.backward()
            optimizer.step()

        print('Epoch finished ! Loss: {}'.format(epoch_loss / (epoch + 1)))
        loss_graph.append(epoch_loss / (epoch + 1))
        count += 1
        x.append(count)

        if save_cp:
            torch.save(net.state_dict(),
                       dir_checkpoint + 'unet_CP{}.pth'.format(epoch + 1))
            print('Checkpoint {} saved !'.format(epoch + 1))

    plt.figure()
    plt.plot(x, loss_graph)
    plt.savefig("unet_loss.jpg")
示例#6
0
def train_model(train_i):
    batchsize = 4
    i = train_i
    # NAME = 'F51_fold'+str(i+1)+'_UNet'
    # net = UNet(usegaussian=False).cuda()
    # NAME = 'GaPF5_fold'+str(i+1)+'_UNet'
    # net = UNet(usegaussian=True).cuda()
    # NAME = 'EMF5_NOpretrain_fold'+str(i+1)+'_FSPNet'
    # NAME = 'EMF5_fold'+str(i+1)+'_FSPNet'
    NAME = 'F5_fold' + str(i + 1) + '_FSPNet'
    net = FPN_Net(is_ema=False).cuda()
    # net.apply(weights_init)
    print(NAME)

    txt_train = 'D163N5fold' + str(train_i + 1) + '_train.csv'
    txt_test = 'D163N5fold' + str(train_i + 1) + '_test.csv'
    dataset_train = MyDataset(root='/home/wangke/ultrasound_data163/',
                              txt_path=txt_train,
                              transform=transforms.ToTensor(),
                              target_transform=transforms.ToTensor())
    dataset_test = MyDataset(root='/home/wangke/ultrasound_data163/',
                             txt_path=txt_test,
                             transform=transforms.ToTensor(),
                             target_transform=transforms.ToTensor())
    train_loader = torch.utils.data.DataLoader(dataset_train,
                                               batch_size=batchsize,
                                               shuffle=True,
                                               num_workers=2)
    test_loader = torch.utils.data.DataLoader(dataset_test,
                                              batch_size=batchsize,
                                              shuffle=False,
                                              num_workers=2)

    mylog = open('models/saved/' + NAME + '.log', 'w')
    total_epoch = 300
    optimizer = torch.optim.Adam(params=net.parameters(), lr=1e-3)
    # scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
    best_test_score = 0
    dice_loss = dice_bce_loss()

    for epoch in range(1, total_epoch):
        total_loss = 0
        data_loader_iter = iter(train_loader)
        data_loader_test = iter(test_loader)
        tic = time()
        train_score = 0

        net.train()
        for img, mask in data_loader_iter:
            img = V(img.cuda(), volatile=False)
            mask_v = V(mask.cuda(), volatile=False)
            optimizer.zero_grad()
            output = net(img)
            loss = dice_loss(mask_v, output)
            loss.backward()
            optimizer.step()
            total_loss += loss
            train_score += dice_coeff(mask, output.cpu().data, False)

        test_score = 0
        test_loss = 0

        net.eval()
        with torch.no_grad():
            for img, mask in data_loader_test:
                # print(img.shape)
                img = V(img.cuda(), volatile=True)
                # mask_v = V(mask.cuda(), volatile=False)
                output = net(img)
                # test_loss += dice_loss(mask_v, output)
                # print(dice_coeff(mask, output.cpu().data, False))
                test_score += dice_coeff(mask, output.cpu().data, False)

        total_loss = total_loss / len(data_loader_iter)
        train_score = train_score / len(data_loader_iter)
        test_score = test_score / len(data_loader_test)
        # test_loss = test_loss/len(data_loader_test)

        # scheduler.step()

        if test_score > best_test_score:
            best_test_score = test_score
            torch.save(net, 'models/saved/' + NAME + '.pkl')
            print('saved, ', best_test_score, file=mylog, flush=True)
            print('saved, ', best_test_score)

        print('********', file=mylog, flush=True)
        print('epoch:',
              epoch,
              '    time:',
              int(time() - tic),
              'train_loss:',
              total_loss.cpu().data.numpy(),
              'train_score:',
              train_score,
              'test_score:',
              test_score,
              'best_score is ',
              best_test_score,
              file=mylog,
              flush=True)
        print('********')
        print('epoch:', epoch, '    time:', int(time() - tic), 'train_loss:',
              total_loss.cpu().data.numpy(), 'train_score:', train_score,
              'test_score:', test_score, 'best_score is ', best_test_score)
示例#7
0
        self.weight = weight
        if os.path.exists(weight):
            net.load_state_dict(torch.load(weight))


train_dataset = MyDataset(img_path, mask_path)
val_dataset = MyDataset(val_img_path, val_mask_path)
train_dataloader = DataLoader(train_dataset,
                              batch_size=batch_size,
                              shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=batch_size)

adam = torch.optim.Adam(net.parameters(), lr=2e-4)
sgd = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)

loss_fun = dice_bce_loss()

if __name__ == '__main__':

    epoch = 1
    log = open(log, 'w', encoding='utf-8')
    log.write('epoch' + '\t' + 'loss' + '\t' + 'pa' + '\t' + 'iou' + '\t' +
              'precision' + '\n')
    log.flush()
    while epoch < 300:
        s_time = time.time()
        print('epoch - {} - training'.format(epoch))
        net.train()
        TP = FP = TN = FN = 0
        pa = 0
        iou = 0
示例#8
0
def get_train(traindata_path, weights_path, NAME, lr=2e-4):
    NAME = NAME + '.pth'

    SHAPE = (768, 768)
    model = DinkNet34()
    model.cuda()
    optimizer = torch.optim.Adam(params=model.parameters(), lr=lr)
    loss = dice_bce_loss()

    batchsize = 2
    img_root = os.path.join(traindata_path, 'imgs')
    mask_root = os.path.join(traindata_path, 'save_masks')

    dataset = ImageFolder(img_root, mask_root, SHAPE)
    data_loader = torch.utils.data.DataLoader(dataset,
                                              batch_size=batchsize,
                                              shuffle=True,
                                              num_workers=0)

    if not os.path.exists('logs'):
        os.makedirs('logs')

    if os.path.exists(os.path.join(weights_path, NAME)):
        model.load_state_dict(torch.load(os.path.join(weights_path, NAME)))
        print('....load weights successfully')

    mylog = open('logs/' + NAME + '.log', 'w')

    old_lr = lr
    no_optim = 0
    total_epoch = 300
    train_epoch_best_loss = 100
    for epoch in range(1, total_epoch + 1):
        data_loader_iter = iter(data_loader)
        train_epoch_loss = 0
        for img1, img2, mask1, mask2 in data_loader_iter:
            img1 = V(img1.cuda())

            img2 = V(img2.cuda())
            mask1 = V(mask1.cuda())
            mask2 = V(mask2.cuda())

            #print('.........',img1.shape,img2.shape,mask1.shape,mask2.shape)
            pred1, pred2 = model(img1, img2)

            loss_1 = loss(mask1, pred1)
            loss_2 = loss(mask2, pred2)
            loss_all = loss_1 + loss_2
            optimizer.zero_grad()
            loss_all.backward()
            optimizer.step()

            train_epoch_loss += loss_1.item()
            train_epoch_loss += loss_2.item()

        train_epoch_loss /= len(data_loader_iter)
        print('epoch:', epoch)
        print('train_loss:', train_epoch_loss)
        if train_epoch_loss >= train_epoch_best_loss:
            no_optim += 1
        else:
            no_optim = 0
            train_epoch_best_loss = train_epoch_loss
            torch.save(model.state_dict(), os.path.join(weights_path, NAME))

        if no_optim > 10:
            print('early stop at %d epoch' % epoch)
            break

        if no_optim > 6:
            if old_lr < 5e-7:
                break

            model.load_state_dict(torch.load(os.path.join(weights_path, NAME)),
                                  strict=False)
            old_lr = update_lr(optimizer,
                               old_lr=old_lr,
                               new_lr=5.0,
                               factor=True,
                               mylog=mylog)
        mylog.flush()
示例#9
0
    run_id = int(runs[-1].split('_')[-1]) + 1 if runs else 0

save_dir = os.path.join(save_dir_root, 'run/CE-Net-topcon-ce-loss')

# Network definition
# if backbone == 'xception':
#     net = deeplab_xception.DeepLabv3_plus(nInputChannels=3, n_classes=12, os=16, pretrained=False)
# elif backbone == 'resnet':
#     net = deeplab_resnet.DeepLabv3_plus(nInputChannels=3, n_classes=12, os=16, pretrained=False)
# else:
#     raise NotImplementedError

net = cenet.CE_Net_OCT(num_classes=12, num_channels=3)

modelName = 'CEnet-' + backbone + '-voc'
criterion_mask = loss.dice_bce_loss()
# criterion_edge = loss.weighted_cross_entropy(num_classes=12)
# criterion = loss.FocalLoss(gamma=2)

print("Backbone network is {}".format(backbone))

if resume_epoch == 0:
    print("Training deeplabv3+ from scratch...")
else:
    print("Initializing weights from: {}...".format(
        os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth')))
    net.load_state_dict(
        torch.load(os.path.join(save_dir, 'models', modelName + '_epoch-' + str(resume_epoch - 1) + '.pth'),
                   map_location=lambda storage, loc: storage)) # Load all tensors onto the CPU

if gpu_id >= 0: