示例#1
0
def train(model, img, art, photo, epoch_num, device, content_name_list,
          style_name_list):
    args = arg_parser()
    features = vgg19_features(model, content_name_list, style_name_list,
                              device)
    optimizer = torch.optim.SGD([img.requires_grad_()],
                                lr=args.lr,
                                momentum=args.momentum)
    _, art_style = features.extract_features(art)
    art_style = [i_style.detach() for i_style in art_style]
    photo_content, _ = features.extract_features(photo)
    photo_content = [i_content.detach() for i_content in photo_content]
    for epoch in range(epoch_num):
        end_time = time.time()
        img_content, img_style = features.extract_features(img)
        C_loss = content_loss(img_content, photo_content)
        S_loss = style_loss(img_style, art_style)
        loss = C_loss * args.content_weight + S_loss
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        if epoch % args.log == 0:
            print('[{0}/{1}]\ttime:{time:.2f}\tloss:{loss:.4f}'.format(epoch, epoch_num,\
                    time=time.time()-end_time, loss=loss.item()*1e6))
            print(C_loss.item(), S_loss.item())

        if epoch % args.save_fre == 0:
            save_img(epoch, img)

    img.data.clamp_(0, 1)
    return img
示例#2
0
        vgg_net = vgg.Model(model_path, width, height)
        # get style layer from constant network
        network = vgg_net.build(style_image, 0)
        style_layer = [
            sess.run(network['conv' + str(i) + '_1']) for i in range(1, 6)
        ]
        # get content layer from constant network
        network = vgg_net.build(content_image, 0)
        content_layer = sess.run(network['conv4_2'])

        # style transfer network
        network = vgg_net.build(pred_image, 1)
        pred_style = [network['conv' + str(i) + '_1'] for i in range(1, 6)]
        pred_content = network['conv4_2']

        style_loss = loss.style_loss(style_layer, pred_style)
        content_loss = loss.content_loss(content_layer, pred_content)

        total_loss = args.ALPHA * content_loss + args.BETA * style_loss

        default_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES)
        vgg_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
                                     scope='vggnet')

        optimizer = tf.train.AdamOptimizer(args.learning_rate).minimize(
            loss=total_loss, var_list=default_vars + vgg_vars)

        saver = tf.train.Saver()

        # train
        print('Training Start !!!')
示例#3
0
def optimize():
    MODEL_DIR_NAME = os.path.dirname(FLAGS.MODEL_PATH)
    if not os.path.exists(MODEL_DIR_NAME):
        os.mkdir(MODEL_DIR_NAME)

    style_paths = FLAGS.STYLE_IMAGES.split(',')
    style_layers = FLAGS.STYLE_LAYERS.split(',')
    content_layers = FLAGS.CONTENT_LAYERS.split(',')

    # style gram matrix
    style_features_t = loss.get_style_features(style_paths, style_layers,
                                               FLAGS.IMAGE_SIZE, FLAGS.STYLE_SCALE, FLAGS.VGG_PATH)

    with tf.Graph().as_default(), tf.Session() as sess:
        # train_images
        images = reader.image(FLAGS.BATCH_SIZE, FLAGS.IMAGE_SIZE,
                              FLAGS.TRAIN_IMAGES_FOLDER, FLAGS.EPOCHS)

        generated = transform.net(images - vgg.MEAN_PIXEL, training=True)
        net, _ = vgg.net(FLAGS.VGG_PATH, tf.concat([generated, images], 0) - vgg.MEAN_PIXEL)

        # 损失函数
        content_loss = loss.content_loss(net, content_layers)
        style_loss = loss.style_loss(
            net, style_features_t, style_layers) / len(style_paths)

        total_loss = FLAGS.STYLE_WEIGHT * style_loss + FLAGS.CONTENT_WEIGHT * content_loss + \
            FLAGS.TV_WEIGHT * loss.total_variation_loss(generated)

        # 准备训练
        global_step = tf.Variable(0, name="global_step", trainable=False)

        variable_to_train = []
        for variable in tf.trainable_variables():
            if not variable.name.startswith('vgg19'):
                variable_to_train.append(variable)

        train_op = tf.train.AdamOptimizer(FLAGS.LEARNING_RATE).minimize(
            total_loss, global_step=global_step, var_list=variable_to_train)

        variables_to_restore = []
        for v in tf.global_variables():
            if not v.name.startswith('vgg19'):
                variables_to_restore.append(v)

        # 开始训练
        saver = tf.train.Saver(variables_to_restore,
                               write_version=tf.train.SaverDef.V1)
        sess.run([tf.global_variables_initializer(),
                  tf.local_variables_initializer()])

        # 加载检查点
        ckpt = tf.train.latest_checkpoint(MODEL_DIR_NAME)
        if ckpt:
            tf.logging.info('Restoring model from {}'.format(ckpt))
            saver.restore(sess, ckpt)

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(coord=coord)
        start_time = time.time()
        try:
            while not coord.should_stop():
                _, loss_t, step = sess.run([train_op, total_loss, global_step])
                elapsed_time = time.time() - start_time
                start_time = time.time()

                if step % 10 == 0:
                    tf.logging.info(
                        'step: %d,  total loss %f, secs/step: %f' % (step, loss_t, elapsed_time))

                if step % 10000 == 0:
                    saver.save(sess, FLAGS.MODEL_PATH, global_step=step)
                    tf.logging.info('Save model')

        except tf.errors.OutOfRangeError:
            saver.save(sess,  FLAGS.MODEL_PATH + '-done')
            tf.logging.info('Done training -- epoch limit reached')
        finally:
            coord.request_stop()

        coord.join(threads)
def style_transfer(content_img_path,
                   img_size,
                   style_img_path,
                   style_size,
                   content_layer,
                   content_weight,
                   style_layers,
                   style_weights,
                   tv_weight,
                   init_random=False):
    """Perform style transfer from style image to source content image
    
    Args:
        content_img_path (str): File location of the content image.
        img_size (int): Size of the smallest content image dimension.
        style_img_path (str): File location of the style image.
        style_size (int): Size of the smallest style image dimension.
        content_layer (int): Index of the layer to use for content loss.
        content_weight (float): Scalar weight for content loss.
        style_layers ([]int): Indices of layers to use for style loss.
        style_weights ([]float): List of scalar weights to use for each layer in style_layers.
        tv_weigh (float): Scalar weight of total variation regularization term.
        init_random (boolean): Whether to initialize the starting image to uniform random noise.
    """
    tf.reset_default_graph()
    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    sess = tf.Session(config=config)

    try:
        model = SqueezeNet(ckpt_path=CKPT_PATH, sess=sess)
    except NotFoundError:
        raise ValueError('checkpoint file is not found, please check %s' %
                         CKPT_PATH)

    # Extract features from content image
    content_img = preprocess_image(load_image(content_img_path, size=img_size))
    content_feats = model.extract_features(model.image)

    # Create content target
    content_target = sess.run(content_feats[content_layer],
                              {model.image: content_img[None]})

    # Extract features from style image
    style_img = preprocess_image(load_image(style_img_path, size=style_size))
    style_feats_by_layer = [content_feats[i] for i in style_layers]

    # Create style targets
    style_targets = []
    for style_feats in style_feats_by_layer:
        style_targets.append(gram_matrix(style_feats))
    style_targets = sess.run(style_targets, {model.image: style_img[None]})

    if init_random:
        generated_img = tf.Variable(tf.random_uniform(content_img[None].shape,
                                                      0, 1),
                                    name="image")
    else:
        generated_img = tf.Variable(content_img[None], name="image")

    # Extract features from generated image
    current_feats = model.extract_features(generated_img)

    loss = content_loss(content_weight, current_feats[content_layer], content_target) + \
        style_loss(current_feats, style_layers, style_targets, style_weights) + \
        total_variation_loss(generated_img, tv_weight)

    # Set up optimization parameters
    init_learning_rate = 3.0
    decayed_learning_rate = 0.1
    max_iter = 200

    learning_rate = tf.Variable(init_learning_rate, name="lr")
    with tf.variable_scope("optimizer") as opt_scope:
        train_op = tf.train.AdamOptimizer(learning_rate).minimize(
            loss, var_list=[generated_img])

    opt_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                 scope=opt_scope.name)
    sess.run(
        tf.variables_initializer([learning_rate, generated_img] + opt_vars))

    # Create an op that will clamp the image values when run
    clamp_image_op = tf.assign(generated_img,
                               tf.clip_by_value(generated_img, -1.5, 1.5))

    display_content_and_style(content_img, style_img)

    for t in range(max_iter):
        sess.run(train_op)
        if t < int(0.90 * max_iter):
            sess.run(clamp_image_op)
        elif t == int(0.90 * max_iter):
            sess.run(tf.assign(learning_rate, decayed_learning_rate))

        if t % 20 == 0:
            current_loss = sess.run(loss)
            print 'Iteration %d: %f' % (t, current_loss)

    img = sess.run(generated_img)
    plt.imshow(deprocess_image(img[0], rescale=True))
    plt.axis('off')
    plt.show()
示例#5
0
def train(options):
    content_weight = options.content_weight
    tv_weight = options.tv_weight
    initial_lr = options.initial_lr
    max_iter = options.max_iter
    style_weights = options.style_weights
    print_iterations = options.print_iterations
    img_size = options.img_size
    content = options.content
    style = options.style
    output = options.output
    beta1 = options.beta1
    beta2 = options.beta2
    epsilon = options.epsilon
    h5_file = options.h5_file

    content_layer = 12
    style_layers = [0, 3, 6, 11, 16]
    style_target_vars = []
    print(tf.test.is_gpu_available(cuda_only=True))
    contentImg = pre_img.load_image(content, size=img_size)
    contentImg = pre_img.preprocess_image(contentImg)
    styleImg = pre_img.load_image(style, size=img_size)
    styleImg = pre_img.preprocess_image(styleImg)
    img_var = tf.Variable(contentImg[None], name="image", dtype=tf.float32)
    lr_var = tf.Variable(initial_lr, name="lr")
    new_img_feats = vgg.extract_features(img_var, h5_file)
    content_img_feats = vgg.extract_features(contentImg[None], h5_file)
    style_img_feats = vgg.extract_features(styleImg[None], h5_file)
    for idx in style_layers:
        style_target_vars.append(loss.gram_matrix(style_img_feats[idx]))
    with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
        style_loss = loss.style_loss(new_img_feats, style_layers,
                                     style_target_vars, style_weights)
        content_loss = loss.content_loss(content_weight,
                                         new_img_feats[content_layer],
                                         content_img_feats[content_layer])
        tv_loss = loss.tv_loss(img_var, tv_weight)
        total_loss = style_loss + content_loss + tv_loss
        optimizer = tf.train.AdamOptimizer(learning_rate=lr_var,
                                           beta1=beta1,
                                           beta2=beta2,
                                           epsilon=epsilon)
        training_op = optimizer.minimize(total_loss, var_list=[img_var])
        init = tf.global_variables_initializer()
        sess.run(init)
        sess.run(img_var.initializer)
        for t in range(max_iter):
            if print_iterations is not None and t % print_iterations == 0:
                new_image = img_var.eval()
                imageio.imwrite(output + '\\iteration_' + str(t) + '.jpg',
                                pre_img.deprocess_image(new_image[0]))
            sess.run(training_op)
            loss_val = sess.run(total_loss)
            s_loss = sess.run(style_loss)
            c_loss = sess.run(content_loss)
            print(
                str(t) + ':' + str(loss_val) + '\t' + str(s_loss) + '\t' +
                str(c_loss))
        new_image = sess.run(img_var)
        imageio.imwrite(output + '\\final.jpg',
                        pre_img.deprocess_image(new_image[0]))