def run(self, data, param): param_opti = parameter.ParameterOptimization(param["penalty"], param["nbclust"], param["w_h"], param["nb_iter"]) G, H, A, S = data["G"], data["H"], data["A"], data["S"] n, m = G.shape _LIB.estimatesh_run(self.obj, G, H, A, S, n, m, param_opti.obj, C.byref(self._EH))
def run(self, data, param): param_opti = parameter.ParameterOptimization(param["penalty"], param["nbclust"], param["w_h"], param["nb_iter"]) G, H, A, S = data["G"], data["H"], data["A"], data["S"] n, m = G.shape _LIB.estimatesknn_run( self.obj, np.ascontiguousarray(H.T), np.ascontiguousarray(A.T), np.ascontiguousarray(S), np.ascontiguousarray(param["weights"]).astype(np.float32), n, m, param["num_threads"], param_opti.obj, C.byref(self._EH))