def set_quantization_dataset_path(self, dataset_path: str) -> None: """Update dataset path in quantization config.""" if dataset_path == "no_dataset_location": return if (self.quantization and self.quantization.calibration and self.quantization.calibration.dataloader and self.quantization.calibration.dataloader.dataset): self.quantization.calibration.dataloader.dataset.params.update( {"root": dataset_path}, ) else: log.warning("Could not set quantization dataset path.")
def set_quantization_dataloader(self, dataloader: dict) -> None: """Udpate dataloader in quantization config.""" if (self.quantization and self.quantization.calibration and self.quantization.calibration.dataloader): calib_dataloader = { dataloader.get("name", "Unknown"): dataloader.get("params", {}), } self.quantization.calibration.dataloader.set_dataset( calib_dataloader) else: log.warning("Could not set performance dataloader.")
def set_evaluation_dataloader(self, dataloader: dict) -> None: """Udpate dataloader in evaluation config.""" dataset = { dataloader.get("name", "Unknown"): dataloader.get("params", {}), } if self.evaluation and self.evaluation.accuracy and self.evaluation.accuracy.dataloader: self.evaluation.accuracy.dataloader.set_dataset(deepcopy(dataset)) else: log.warning("Could not set accuracy dataloader.") if (self.evaluation and self.evaluation.performance and self.evaluation.performance.dataloader): self.evaluation.performance.dataloader.set_dataset( deepcopy(dataset)) else: log.warning("Could not set performance dataloader.")
def set_evaluation_dataset_path(self, dataset_path: str) -> None: """Update dataset path in evaluation config.""" if dataset_path == "no_dataset_location": return if (self.evaluation and self.evaluation.accuracy and self.evaluation.accuracy.dataloader and self.evaluation.accuracy.dataloader.dataset): self.evaluation.accuracy.dataloader.dataset.params.update( {"root": dataset_path}, ) else: log.warning("Could not set accuracy dataset path.") if (self.evaluation and self.evaluation.performance and self.evaluation.performance.dataloader and self.evaluation.performance.dataloader.dataset): self.evaluation.performance.dataloader.dataset.params.update( {"root": dataset_path}, ) else: log.warning("Could not set performance dataset path.")
def __init__(self) -> None: """Initialize HW Info class and gather information platform hardware.""" cpu_info = cpuinfo.get_cpu_info() self.sockets: int = get_number_of_sockets() self.cores: int = psutil.cpu_count(logical=False) self.cores_per_socket: int = int( psutil.cpu_count(logical=False) / self.sockets) self.threads_per_socket: int = int( psutil.cpu_count(logical=True) / self.sockets) self.total_memory: str = f"{psutil.virtual_memory().total / (1024 ** 3):.3f}GB" self.system: str = get_distribution() self.ip = determine_ip() if cpu_info.get("brand"): self.platform = cpu_info.get("brand") elif cpu_info.get("brand_raw"): self.platform = cpu_info.get("brand_raw") else: self.platform = "" self.hyperthreading_enabled: bool = psutil.cpu_count( logical=False) != psutil.cpu_count(logical=True, ) self.turboboost_enabled = is_turbo_boost_enabled() self.bios_version = get_bios_version() self.kernel: str = get_kernel_version() try: min_cpu_freq = int(psutil.cpu_freq(percpu=False).min) max_cpu_freq = int(psutil.cpu_freq(percpu=False).max) except Exception: log.warning("Cannot collect cpu frequency information.") min_cpu_freq = 0 max_cpu_freq = 0 finally: if min_cpu_freq == 0: self.min_cpu_freq = "n/a" else: self.min_cpu_freq = f"{min_cpu_freq}Hz" if max_cpu_freq == 0: self.max_cpu_freq = "n/a" else: self.max_cpu_freq = f"{max_cpu_freq}Hz"
def serialize( self, serialization_type: str = "default", ) -> Union[Dict[str, Any], List[Dict[str, Any]]]: """ Serialize class to dict. :param serialization_type: serialization type, defaults to "default" :type serialization_type: str, optional :return: serialized class :rtype: Union[dict, List[dict]] """ result = {} for key, value in self.__dict__.items(): if key in self._skip: continue if value is None: continue variable_name = re.sub(r"^_", "", key) getter_value = value try: getter_value = getattr(self, variable_name) except AttributeError: log.warning( f"Found f{key} attribute without {variable_name} getter.") serialized_value = self._serialize_value( getter_value, serialization_type, ) if serialized_value is not None: result[variable_name] = serialized_value return result
def report_deprecated(*args: str, **kwargs: str) -> Any: log.warning(f"Call to deprecated function {func.__name__}.") return func(*args, **kwargs)