示例#1
0
文件: FFReg.py 项目: hot50773/FFReg
def Cv_Leave_One_Curve(x, y, x0, candidate_h, ker_fun='Gaussian'):
    """
    input variable:
        x : matrix with dimension (num_of_points, dim)
        y : vecor with length num_of_points
        x0 : narray
        h : vector
        bin_width : vector
    """
    grid_shape = np.asarray(x0.shape[:-1])
    num_fun, num_pt, d = x.shape
    no_nan_val = ~np.isnan(y)
    bin_width = np.ptp(x0.reshape(-1, d), 0) / (grid_shape - 1)
    x0_min = x0.reshape(-1, d).min(0)
    x0_max = x0.reshape(-1, d).max(0)
    grid = tuple(
        np.linspace(x0_min.take(i), x0_max.take(i), x0.shape[i])
        for i in range(d))

    bin_data_y, bin_data_num = lpr.Bin_Data(
        np.compress(no_nan_val.reshape(-1), x.reshape(-1, d), 0),
        np.compress(no_nan_val.reshape(-1), y.reshape(-1)), x0)
    #rand_num_fun = np.random.choice(num_fun, 100 if num_fun > 100 else num_fun, replace = False)
    rand_num_fun = np.arange(num_fun)
    test_fun = x.take(rand_num_fun, 0)
    test_y = y.take(rand_num_fun, 0)
    rand_num_no_nan_val = no_nan_val.take(rand_num_fun, 0)
    sse = np.ones(candidate_h.shape[0])
    for i in range(candidate_h.shape[0]):
        h = candidate_h.take(i, 0)
        r = lpr.Get_Range(bin_width, h, ker_fun)
        delta_x = lpr.Get_Delta_x(bin_width, r)
        weight = lpr.Get_Weight(delta_x, h, ker_fun)
        big_x = np.hstack((np.ones((delta_x.shape[0], 1)), delta_x))
        h_too_small = False
        for fun_i in range(test_fun.shape[0]):
            test_funi = test_fun.take(fun_i, 0)
            test_yi = test_y.take(fun_i, 0)
            fun_no_nan_value = rand_num_no_nan_val.take(fun_i, 0)
            fun_biny, fun_binx = lpr.Bin_Data(
                np.compress(fun_no_nan_value, test_funi, 0),
                np.compress(fun_no_nan_value, test_yi), x0)
            biny = bin_data_y - fun_biny
            binx = bin_data_num - fun_binx
            ext_biny, ext_binx = lpr.Extend_Bin_Data([biny, binx], r)
            train_y = lpr.Get_Linear_Solve(big_x.T, weight, ext_binx, ext_biny,
                                           r)
            if np.any(np.isnan(train_y)):
                h_too_small = True
                break
            interp_fun = sp.interpolate.RegularGridInterpolator(
                grid, train_y.reshape(x0.shape[:-1]), bounds_error=False)
            interp_y = interp_fun(test_funi)
            sse[i] += np.nansum((test_yi - interp_y)**2)
        if h_too_small:
            sse[i] = np.nan
    opt_h = candidate_h.take(np.nanargmin(sse), 0)
    return (opt_h)
示例#2
0
 def __Main(self, x, y, x0, h_mean, h_cov, h_cov_dia, fve, binning,
            bin_weight, ker_fun, bw_select, dtype):
     """
     input:
         x: ndarray (#functions, #points, #dimension)
         y: ndarray (#functions, #points)
         x0: ndarray
         candidate_h: ndarray (#h, #dimension)
         num_grid: vector
     """
     ###
     if binning is True:
         bin_data = np.asarray(
             list(
                 map(lambda xy: lpr.Bin_Data(xy[0], xy[1], x0, bin_weight),
                     zip(x, y))))
     else:
         bin_data = None
     self.__Fit_Mean(x, y, x0, h_mean, binning, bin_weight, ker_fun,
                     bw_select, dtype, bin_data)
     ###
     self.__Fit_Cov(x, y, x0, h_cov, binning, bin_weight, ker_fun,
                    bw_select, dtype, bin_data)
     ###
     self.__Fit_EigPairs(fve)
     ###
     self.__Fit_Sigma2(x, y, x0, h_cov_dia, binning, bin_weight, ker_fun,
                       bw_select, dtype)
     ###PACE
     self.fpc_scores = self.__Fit_Fpc_Scores(x, y)
示例#3
0
 def __Get_Row_Cov(self, x, y, cov_x0, binning, bin_weight, bin_data=None):
     cov_grid_shape = cov_x0.shape[:-1]
     num_fun = len(bin_data)
     if binning == True:
         bin_cov_diag_data = np.zeros((2, ) + cov_grid_shape)
         bin_cov_y = np.matmul(
             bin_data.take(0, 1).reshape(num_fun, -1).T,
             bin_data.take(0, 1).reshape(num_fun, -1))
         bin_cov_x = np.matmul(
             bin_data.take(1, 1).reshape(num_fun, -1).T,
             bin_data.take(1, 1).reshape(num_fun, -1))
         bin_cov_data = np.asarray([bin_cov_y, bin_cov_x])
         for i in range(num_fun):
             xx = np.tile(x[i], 2)
             yy = y[i]**2
             bin_cov_diag_data += lpr.Bin_Data(xx, yy, cov_x0, bin_weight)
         bin_cov_data = bin_cov_data.reshape(
             (2, ) + cov_grid_shape) - bin_cov_diag_data
         return (bin_cov_data)
     else:
         xx = [None] * self.__num_fun
         yy = [None] * self.__num_fun
         for i in range(self.__num_fun):
             num_pt = y[i].size
             yy[i] = np.delete(
                 np.outer(y[i], y[i]).flatten(),
                 np.arange(0, num_pt**2, num_pt + 1))
             xx[i] = np.delete(
                 np.vstack(np.dstack(x[i][np.mgrid[:num_pt, :num_pt]])),
                 np.arange(0, num_pt**2, num_pt + 1), 0)
         return ([xx, yy, cov_x0])
示例#4
0
    def __Fit_Sigma2(self, x, y, x0, candidate_h, binning, bin_weight, ker_fun,
                     bw_select, dtype):
        yy = [yi**2 for yi in y]
        if binning == True:
            cov_diag_bin_data = np.asarray(
                list(
                    map(lambda xy: lpr.Bin_Data(xy[0], xy[1], x0, bin_weight),
                        zip(x, yy))))
            if bw_select == 'Partition':
                rand_index = np.random.permutation(self.__num_fun)
                train_bin_data, test_bin_data = np.split(
                    cov_diag_bin_data.take(rand_index, 0), [self.__n_train])
                self.cov_diag_bw = self.__BW_Partition(
                    x0=x0,
                    candidate_h=candidate_h,
                    ker_fun=ker_fun,
                    binning=binning,
                    dtype=dtype,
                    train_bin_data=train_bin_data.sum(0),
                    test_bin_data=test_bin_data.sum(0))
            elif bw_select == 'LeaveOneOut':
                if self.__num_fun > 100:
                    test_index = np.random.random_integers(
                        0, self.__num_fun - 1, 100)
                else:
                    test_index = range(self.__num_fun)
                test_bin_data = cov_diag_bin_data.take(test_index, 0)
                self.cov_diag_bw = self.__CV_Leave_One_Curve(
                    x0=x0,
                    candidate_h=candidate_h,
                    ker_fun=ker_fun,
                    binning=binning,
                    dtype=dtype,
                    bin_data=cov_diag_bin_data.sum(0),
                    test_bin_data=test_bin_data)

            self.cov_dia_fun = lpr.Lpr_For_Bin(
                bin_data=cov_diag_bin_data.sum(0),
                bin_width=self.__bin_width,
                h=self.cov_diag_bw,
                ker_fun=ker_fun,
                dtype=dtype) - self.mean_fun**2
        else:
            if bw_select == 'Partition':
                self.cov_bw = self.__BW_Partition(x0=x0,
                                                  candidate_h=candidate_h,
                                                  ker_fun=ker_fun,
                                                  binning=binning,
                                                  dtype=dtype,
                                                  x=x,
                                                  y=yy)
            elif bw_select == 'LeaveOneOut':
                self.cov_bw = self.__CV_Leave_One_Curve(
                    x0=x0,
                    candidate_h=candidate_h,
                    ker_fun=ker_fun,
                    binning=binning,
                    dtype=dtype,
                    x=x,
                    y=yy)
            self.cov_dia_fun = lpr.Lpr(x=np.vstack(x),
                                       y=np.hstack(yy),
                                       x0=x0,
                                       h=self.cov_diag_bw,
                                       binning=binning,
                                       bin_weight=bin_weight,
                                       ker_fun=ker_fun,
                                       dtype=dtype) - self.mean_fun**2

        interval = np.array([(self.__grid_shape / 4).astype('int'),
                             (3 * self.__grid_shape / 4).astype('int')])
        restruct_cov_fun = np.matmul(
            np.matmul(self.eig_fun.T, np.diag(self.eig_val)), self.eig_fun)
        sigma2_t = (self.cov_dia_fun - np.diag(restruct_cov_fun)).reshape(
            self.__grid_shape)
        for i in range(self.__d):
            left, right = interval.take(i, 1)
            sigma2_t = sigma2_t.take(np.arange(left, right), i)
        self.sigma2 = (sigma2_t).mean()
        self.sigma2 = 0 if self.sigma2 < 0 else self.sigma2