def generate_high_am(nside, nexp=1, n_high_am=2, hair_weight=6., pair_time=22.,
                     camera_rot_limits=[-80., 80.], season=300., season_start_hour=-4., season_end_hour=2.,
                     shadow_minutes=60., max_alt=76., moon_distance=30., ignore_obs='DD',
                     m5_weight=6., footprint_weight=0.6, slewtime_weight=3.,
                     stayfilter_weight=3., template_weight=12., const_weight=1, min_area=288.,
                     mask_east=True, mask_west=False, survey_name='high_am', filters='ug'):
    """Let's set this up like the blob, but then give it a little extra weight.
    """
    target_maps = standard_goals(nside=nside)
    surveys = []

    for filtername in filters:
        survey_name_final = survey_name+', %s' % filtername
        target_map = target_maps[filtername]*0
        target_map[np.where(target_maps[filtername] == np.max(target_maps[filtername]))] = 1.
        detailer_list = []
        detailer_list.append(detailers.Spider_rot_detailer())
        detailer_list.append(detailers.Close_alt_detailer())
        bfs = []
        bfs.append((bf.M5_diff_basis_function(filtername=filtername, nside=nside), m5_weight))
        bfs.append((bf.Slewtime_basis_function(filtername=filtername, nside=nside), slewtime_weight))
        bfs.append((bf.Strict_filter_basis_function(filtername=filtername), slewtime_weight))
        bfs.append((bf.N_obs_high_am_basis_function(nside=nside, footprint=target_map, filtername=filtername,
                                                    n_obs=n_high_am, season=season,
                                                    out_of_bounds_val=np.nan), hair_weight))
        bfs.append((bf.Constant_basis_function(), const_weight))
        # Masks, give these 0 weight
        bfs.append((bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=shadow_minutes, max_alt=max_alt,
                                                         penalty=np.nan, site='LSST'), 0.))
        bfs.append((bf.Moon_avoidance_basis_function(nside=nside, moon_distance=moon_distance), 0.))
        bfs.append((bf.Filter_loaded_basis_function(filternames=filtername), 0))
        bfs.append((bf.Time_to_twilight_basis_function(time_needed=pair_time), 0.))
        bfs.append((bf.Not_twilight_basis_function(), 0.))
        bfs.append((bf.Planet_mask_basis_function(nside=nside), 0.))
        if mask_east:
            bfs.append((bf.Mask_azimuth_basis_function(az_min=0., az_max=180.), 0.))
        if mask_west:
            bfs.append((bf.Mask_azimuth_basis_function(az_min=180., az_max=360.), 0.))

        weights = [val[1] for val in bfs]
        basis_functions = [val[0] for val in bfs]
        surveys.append(Blob_survey(basis_functions, weights, filtername1=filtername, filtername2=None,
                                   ideal_pair_time=pair_time, nside=nside,
                                   survey_note=survey_name_final, ignore_obs=ignore_obs, dither=True,
                                   nexp=nexp, detailers=detailer_list, min_area=min_area))
    return surveys
def gen_greedy_surveys(nside=32,
                       nexp=1,
                       exptime=30.,
                       filters=['r', 'i', 'z', 'y'],
                       camera_rot_limits=[-80., 80.],
                       shadow_minutes=60.,
                       max_alt=76.,
                       moon_distance=30.,
                       ignore_obs='DD',
                       m5_weight=3.,
                       footprint_weight=0.3,
                       slewtime_weight=3.,
                       stayfilter_weight=3.):
    """
    Make a quick set of greedy surveys

    This is a convienence function to generate a list of survey objects that can be used with
    lsst.sims.featureScheduler.schedulers.Core_scheduler.
    To ensure we are robust against changes in the sims_featureScheduler codebase, all kwargs are
    explicitly set.

    Parameters
    ----------
    nside : int (32)
        The HEALpix nside to use
    nexp : int (1)
        The number of exposures to use in a visit.
    exptime : float (30.)
        The exposure time to use per visit (seconds)
    filters : list of str (['r', 'i', 'z', 'y'])
        Which filters to generate surveys for.
    camera_rot_limits : list of float ([-80., 80.])
        The limits to impose when rotationally dithering the camera (degrees).
    shadow_minutes : float (60.)
        Used to mask regions around zenith (minutes)
    max_alt : float (76.
        The maximium altitude to use when masking zenith (degrees)
    moon_distance : float (30.)
        The mask radius to apply around the moon (degrees)
    ignore_obs : str or list of str ('DD')
        Ignore observations by surveys that include the given substring(s).
    m5_weight : float (3.)
        The weight for the 5-sigma depth difference basis function
    footprint_weight : float (0.3)
        The weight on the survey footprint basis function.
    slewtime_weight : float (3.)
        The weight on the slewtime basis function
    stayfilter_weight : float (3.)
        The weight on basis function that tries to stay avoid filter changes.
    """
    # Define the extra parameters that are used in the greedy survey. I
    # think these are fairly set, so no need to promote to utility func kwargs
    greed_survey_params = {
        'block_size': 1,
        'smoothing_kernel': None,
        'seed': 42,
        'camera': 'LSST',
        'dither': True,
        'survey_name': 'greedy'
    }

    footprints = standard_goals(nside=nside)
    sum_footprints = 0
    for key in footprints:
        sum_footprints += np.sum(footprints[key])

    surveys = []
    detailer = detailers.Spider_rot_detailer()

    for filtername in filters:
        bfs = []
        bfs.append((bf.M5_diff_basis_function(filtername=filtername,
                                              nside=nside), m5_weight))
        bfs.append(
            (bf.Footprint_basis_function(filtername=filtername,
                                         footprint=footprints[filtername],
                                         out_of_bounds_val=np.nan,
                                         nside=nside,
                                         all_footprints_sum=sum_footprints),
             footprint_weight))
        bfs.append((bf.Slewtime_basis_function(filtername=filtername,
                                               nside=nside), slewtime_weight))
        bfs.append((bf.Strict_filter_basis_function(filtername=filtername),
                    stayfilter_weight))
        # Masks, give these 0 weight
        bfs.append((bf.Zenith_shadow_mask_basis_function(
            nside=nside, shadow_minutes=shadow_minutes, max_alt=max_alt), 0))
        bfs.append(
            (bf.Moon_avoidance_basis_function(nside=nside,
                                              moon_distance=moon_distance), 0))

        bfs.append(
            (bf.Filter_loaded_basis_function(filternames=filtername), 0))
        bfs.append((bf.Planet_mask_basis_function(nside=nside), 0))

        weights = [val[1] for val in bfs]
        basis_functions = [val[0] for val in bfs]
        surveys.append(
            Greedy_survey(basis_functions,
                          weights,
                          exptime=exptime,
                          filtername=filtername,
                          nside=nside,
                          ignore_obs=ignore_obs,
                          nexp=nexp,
                          detailers=[detailer],
                          **greed_survey_params))

    return surveys
def generate_blobs(nside,
                   nexp=1,
                   exptime=30.,
                   filter1s=['u', 'u', 'u', 'g', 'r', 'i', 'z', 'y'],
                   filter2s=['u', 'g', 'r', 'r', 'i', 'z', 'y', 'y'],
                   pair_time=22.,
                   camera_rot_limits=[-80., 80.],
                   n_obs_template=3,
                   season=300.,
                   season_start_hour=-4.,
                   season_end_hour=2.,
                   shadow_minutes=60.,
                   max_alt=76.,
                   moon_distance=30.,
                   ignore_obs='DD',
                   m5_weight=6.,
                   footprint_weight=0.6,
                   slewtime_weight=3.,
                   stayfilter_weight=3.,
                   template_weight=12.):
    """
    Generate surveys that take observations in blobs.

    Parameters
    ----------
    nside : int (32)
        The HEALpix nside to use
    nexp : int (1)
        The number of exposures to use in a visit.
    exptime : float (30.)
        The exposure time to use per visit (seconds)
    filter1s : list of str
        The filternames for the first set
    filter2s : list of str
        The filter names for the second in the pair (None if unpaired)
    pair_time : float (22)
        The ideal time between pairs (minutes)
    camera_rot_limits : list of float ([-80., 80.])
        The limits to impose when rotationally dithering the camera (degrees).
    n_obs_template : int (3)
        The number of observations to take every season in each filter
    season : float (300)
        The length of season (i.e., how long before templates expire) (days)
    season_start_hour : float (-4.)
        For weighting how strongly a template image needs to be observed (hours)
    sesason_end_hour : float (2.)
        For weighting how strongly a template image needs to be observed (hours)
    shadow_minutes : float (60.)
        Used to mask regions around zenith (minutes)
    max_alt : float (76.
        The maximium altitude to use when masking zenith (degrees)
    moon_distance : float (30.)
        The mask radius to apply around the moon (degrees)
    ignore_obs : str or list of str ('DD')
        Ignore observations by surveys that include the given substring(s).
    m5_weight : float (3.)
        The weight for the 5-sigma depth difference basis function
    footprint_weight : float (0.3)
        The weight on the survey footprint basis function.
    slewtime_weight : float (3.)
        The weight on the slewtime basis function
    stayfilter_weight : float (3.)
        The weight on basis function that tries to stay avoid filter changes.
    template_weight : float (12.)
        The weight to place on getting image templates every season
    """

    blob_survey_params = {
        'slew_approx': 7.5,
        'filter_change_approx': 140.,
        'read_approx': 2.,
        'min_pair_time': 15.,
        'search_radius': 30.,
        'alt_max': 85.,
        'az_range': 90.,
        'flush_time': 30.,
        'smoothing_kernel': None,
        'nside': nside,
        'seed': 42,
        'dither': True,
        'twilight_scale': True
    }

    footprints = standard_goals(nside=nside)
    sum_footprints = 0
    for key in footprints:
        sum_footprints += np.sum(footprints[key])

    surveys = []

    times_needed = [pair_time, pair_time * 2]
    for filtername, filtername2 in zip(filter1s, filter2s):
        detailer_list = []
        detailer_list.append(detailers.Spider_rot_detailer())
        detailer_list.append(detailers.Close_alt_detailer())
        # List to hold tuples of (basis_function_object, weight)
        bfs = []

        if filtername2 is not None:
            bfs.append(
                (bf.M5_diff_basis_function(filtername=filtername,
                                           nside=nside), m5_weight / 2.))
            bfs.append(
                (bf.M5_diff_basis_function(filtername=filtername2,
                                           nside=nside), m5_weight / 2.))

        else:
            bfs.append((bf.M5_diff_basis_function(filtername=filtername,
                                                  nside=nside), m5_weight))

        if filtername2 is not None:
            bfs.append((bf.Footprint_basis_function(
                filtername=filtername,
                footprint=footprints[filtername],
                out_of_bounds_val=np.nan,
                nside=nside,
                all_footprints_sum=sum_footprints), footprint_weight / 2.))
            bfs.append((bf.Footprint_basis_function(
                filtername=filtername2,
                footprint=footprints[filtername2],
                out_of_bounds_val=np.nan,
                nside=nside,
                all_footprints_sum=sum_footprints), footprint_weight / 2.))
        else:
            bfs.append((bf.Footprint_basis_function(
                filtername=filtername,
                footprint=footprints[filtername],
                out_of_bounds_val=np.nan,
                nside=nside,
                all_footprints_sum=sum_footprints), footprint_weight))

        bfs.append((bf.Slewtime_basis_function(filtername=filtername,
                                               nside=nside), slewtime_weight))
        bfs.append((bf.Strict_filter_basis_function(filtername=filtername),
                    stayfilter_weight))

        if filtername2 is not None:
            bfs.append((bf.N_obs_per_year_basis_function(
                filtername=filtername,
                nside=nside,
                footprint=footprints[filtername],
                n_obs=n_obs_template,
                season=season,
                season_start_hour=season_start_hour,
                season_end_hour=season_end_hour), template_weight / 2.))
            bfs.append((bf.N_obs_per_year_basis_function(
                filtername=filtername2,
                nside=nside,
                footprint=footprints[filtername2],
                n_obs=n_obs_template,
                season=season,
                season_start_hour=season_start_hour,
                season_end_hour=season_end_hour), template_weight / 2.))
        else:
            bfs.append((bf.N_obs_per_year_basis_function(
                filtername=filtername,
                nside=nside,
                footprint=footprints[filtername],
                n_obs=n_obs_template,
                season=season,
                season_start_hour=season_start_hour,
                season_end_hour=season_end_hour), template_weight))
        # Masks, give these 0 weight
        bfs.append((bf.Zenith_shadow_mask_basis_function(
            nside=nside,
            shadow_minutes=shadow_minutes,
            max_alt=max_alt,
            penalty=np.nan,
            site='LSST'), 0.))
        bfs.append(
            (bf.Moon_avoidance_basis_function(nside=nside,
                                              moon_distance=moon_distance),
             0.))
        filternames = [
            fn for fn in [filtername, filtername2] if fn is not None
        ]
        bfs.append(
            (bf.Filter_loaded_basis_function(filternames=filternames), 0))
        if filtername2 is None:
            time_needed = times_needed[0]
        else:
            time_needed = times_needed[1]
        bfs.append(
            (bf.Time_to_twilight_basis_function(time_needed=time_needed), 0.))
        bfs.append((bf.Not_twilight_basis_function(), 0.))
        bfs.append((bf.Planet_mask_basis_function(nside=nside), 0.))

        # unpack the basis functions and weights
        weights = [val[1] for val in bfs]
        basis_functions = [val[0] for val in bfs]
        if filtername2 is None:
            survey_name = 'blob, %s' % filtername
        else:
            survey_name = 'blob, %s%s' % (filtername, filtername2)
        if filtername2 is not None:
            detailer_list.append(
                detailers.Take_as_pairs_detailer(filtername=filtername2))
        surveys.append(
            Blob_survey(basis_functions,
                        weights,
                        filtername1=filtername,
                        filtername2=filtername2,
                        exptime=exptime,
                        ideal_pair_time=pair_time,
                        survey_note=survey_name,
                        ignore_obs=ignore_obs,
                        nexp=nexp,
                        detailers=detailer_list,
                        **blob_survey_params))

    return surveys
    for arg in sys.argv:
        exec_command += ' ' + arg
    extra_info['exec command'] = exec_command
    try:
        extra_info['git hash'] = subprocess.check_output(
            ['git', 'rev-parse', 'HEAD'])
    except subprocess.CalledProcessError:
        extra_info['git hash'] = 'Not in git repo'

    extra_info['file executed'] = os.path.realpath(__file__)

    fileroot = 'spiders_'
    file_end = 'v1.4_'

    # Set up the DDF surveys to dither
    dither_detailer = detailers.Dither_detailer(per_night=per_night,
                                                max_dither=max_dither)
    details = [detailers.Spider_rot_detailer(), dither_detailer]
    ddfs = generate_dd_surveys(nside=nside, nexp=nexp, detailers=details)

    greedy = gen_greedy_surveys(nside, nexp=nexp)
    blobs = generate_blobs(nside, nexp=nexp)
    surveys = [ddfs, blobs, greedy]
    run_sched(surveys,
              survey_length=survey_length,
              verbose=verbose,
              fileroot=os.path.join(outDir, fileroot + file_end),
              extra_info=extra_info,
              nside=nside,
              illum_limit=illum_limit)