def testFracBelowMetric(self): cutoff = 5.1 testmetric = metrics.FracBelowMetric('testdata', cutoff=cutoff) self.assertEqual(testmetric.run(self.dv), np.size(np.where(self.dv['testdata'] <= cutoff)[0])/float(np.size(self.dv))) testmetric = metrics.FracBelowMetric('testdata', cutoff=cutoff, scale=2) self.assertEqual(testmetric.run(self.dv), 2.0*np.size(np.where(self.dv['testdata'] <= cutoff)[0])/float(np.size(self.dv)))
def makeBundleList(dbFile, runName=None, nside=64, benchmark='design', lonCol='fieldRA', latCol='fieldDec', seeingCol='seeingFwhmGeom'): """ make a list of metricBundle objects to look at the scientific performance of an opsim run. """ # List to hold everything we're going to make bundleList = [] # List to hold metrics that shouldn't be saved noSaveBundleList = [] # Connect to the databse opsimdb = db.OpsimDatabaseV4(dbFile) if runName is None: runName = os.path.basename(dbFile).replace('_sqlite.db', '') # Fetch the proposal ID values from the database propids, propTags = opsimdb.fetchPropInfo() # Fetch the telescope location from config lat, lon, height = opsimdb.fetchLatLonHeight() # Add metadata regarding dithering/non-dithered. commonname = ''.join([a for a in lonCol if a in latCol]) if commonname == 'field': slicermetadata = ' (non-dithered)' else: slicermetadata = ' (%s)' % (commonname) # Construct a WFD SQL where clause so multiple propIDs can query by WFD: wfdWhere = opsimdb.createSQLWhere('WFD', propTags) print('#FYI: WFD "where" clause: %s' % (wfdWhere)) ddWhere = opsimdb.createSQLWhere('DD', propTags) print('#FYI: DD "where" clause: %s' % (ddWhere)) # Set up benchmark values, scaled to length of opsim run. runLength = opsimdb.fetchRunLength() if benchmark == 'requested': # Fetch design values for seeing/skybrightness/single visit depth. benchmarkVals = utils.scaleBenchmarks(runLength, benchmark='design') # Update nvisits with requested visits from config files. benchmarkVals['nvisits'] = opsimdb.fetchRequestedNvisits(propId=propTags['WFD']) # Calculate expected coadded depth. benchmarkVals['coaddedDepth'] = utils.calcCoaddedDepth(benchmarkVals['nvisits'], benchmarkVals['singleVisitDepth']) elif (benchmark == 'stretch') or (benchmark == 'design'): # Calculate benchmarks for stretch or design. benchmarkVals = utils.scaleBenchmarks(runLength, benchmark=benchmark) benchmarkVals['coaddedDepth'] = utils.calcCoaddedDepth(benchmarkVals['nvisits'], benchmarkVals['singleVisitDepth']) else: raise ValueError('Could not recognize benchmark value %s, use design, stretch or requested.' % (benchmark)) # Check that nvisits is not set to zero (for very short run length). for f in benchmarkVals['nvisits']: if benchmarkVals['nvisits'][f] == 0: print('Updating benchmark nvisits value in %s to be nonzero' % (f)) benchmarkVals['nvisits'][f] = 1 # Set values for min/max range of nvisits for All/WFD and DD plots. These are somewhat arbitrary. nvisitsRange = {} nvisitsRange['all'] = {'u': [20, 80], 'g': [50, 150], 'r': [100, 250], 'i': [100, 250], 'z': [100, 300], 'y': [100, 300]} nvisitsRange['DD'] = {'u': [6000, 10000], 'g': [2500, 5000], 'r': [5000, 8000], 'i': [5000, 8000], 'z': [7000, 10000], 'y': [5000, 8000]} # Scale these ranges for the runLength. scale = runLength / 10.0 for prop in nvisitsRange: for f in nvisitsRange[prop]: for i in [0, 1]: nvisitsRange[prop][f][i] = int(np.floor(nvisitsRange[prop][f][i] * scale)) # Filter list, and map of colors (for plots) to filters. filters = ['u', 'g', 'r', 'i', 'z', 'y'] colors = {'u': 'cyan', 'g': 'g', 'r': 'y', 'i': 'r', 'z': 'm', 'y': 'k'} filtorder = {'u': 1, 'g': 2, 'r': 3, 'i': 4, 'z': 5, 'y': 6} # Easy way to run through all fi # Set up a list of common summary stats commonSummary = [metrics.MeanMetric(), metrics.RobustRmsMetric(), metrics.MedianMetric(), metrics.PercentileMetric(metricName='25th%ile', percentile=25), metrics.PercentileMetric(metricName='75th%ile', percentile=75), metrics.MinMetric(), metrics.MaxMetric()] allStats = commonSummary # Set up some 'group' labels reqgroup = 'A: Required SRD metrics' depthgroup = 'B: Depth per filter' uniformitygroup = 'C: Uniformity' airmassgroup = 'D: Airmass distribution' seeinggroup = 'E: Seeing distribution' transgroup = 'F: Transients' sngroup = 'G: SN Ia' altAzGroup = 'H: Alt Az' rangeGroup = 'I: Range of Dates' intergroup = 'J: Inter-Night' phaseGroup = 'K: Max Phase Gap' NEOGroup = 'L: NEO Detection' # Set up an object to track the metricBundles that we want to combine into merged plots. mergedHistDict = {} # Set the histogram merge function. mergeFunc = plots.HealpixHistogram() keys = ['NVisits', 'coaddm5', 'NormEffTime', 'Minseeing', 'seeingAboveLimit', 'minAirmass', 'fracAboveAirmass'] for key in keys: mergedHistDict[key] = plots.PlotBundle(plotFunc=mergeFunc) ## # Calculate the fO metrics for all proposals and WFD only. order = 0 for prop in ('All prop', 'WFD only'): if prop == 'All prop': metadata = 'All Visits' + slicermetadata sqlconstraint = '' if prop == 'WFD only': metadata = 'WFD only' + slicermetadata sqlconstraint = '%s' % (wfdWhere) # Configure the count metric which is what is used for f0 slicer. m1 = metrics.CountMetric(col='observationStartMJD', metricName='fO') plotDict = {'xlabel': 'Number of Visits', 'Asky': benchmarkVals['Area'], 'Nvisit': benchmarkVals['nvisitsTotal'], 'xMin': 0, 'xMax': 1500} summaryMetrics = [metrics.fOArea(nside=nside, norm=False, metricName='fOArea: Nvisits (#)', Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']), metrics.fOArea(nside=nside, norm=True, metricName='fOArea: Nvisits/benchmark', Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']), metrics.fONv(nside=nside, norm=False, metricName='fONv: Area (sqdeg)', Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']), metrics.fONv(nside=nside, norm=True, metricName='fONv: Area/benchmark', Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal'])] caption = 'The FO metric evaluates the overall efficiency of observing. ' caption += ('fOArea: Nvisits = %.1f sq degrees receive at least this many visits out of %d. ' % (benchmarkVals['Area'], benchmarkVals['nvisitsTotal'])) caption += ('fONv: Area = this many square degrees out of %.1f receive at least %d visits.' % (benchmarkVals['Area'], benchmarkVals['nvisitsTotal'])) displayDict = {'group': reqgroup, 'subgroup': 'F0', 'displayOrder': order, 'caption': caption} order += 1 slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol) bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryMetrics, plotFuncs=[plots.FOPlot()], runName=runName, metadata=metadata) bundleList.append(bundle) ### # Calculate the Rapid Revisit Metrics. order = 0 metadata = 'All Visits' + slicermetadata sqlconstraint = '' dTmin = 40.0 # seconds dTmax = 30.0*60. # seconds minNvisit = 100 pixArea = float(hp.nside2pixarea(nside, degrees=True)) scale = pixArea * hp.nside2npix(nside) cutoff1 = 0.15 extraStats1 = [metrics.FracBelowMetric(cutoff=cutoff1, scale=scale, metricName='Area (sq deg)')] extraStats1.extend(commonSummary) slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol) m1 = metrics.RapidRevisitMetric(metricName='RapidRevisitUniformity', dTmin=dTmin / 60.0 / 60.0 / 24.0, dTmax=dTmax / 60.0 / 60.0 / 24.0, minNvisits=minNvisit) plotDict = {'xMin': 0, 'xMax': 1} summaryStats = extraStats1 caption = 'Deviation from uniformity for short revisit timescales, between %s and %s seconds, ' % ( dTmin, dTmax) caption += 'for pointings with at least %d visits in this time range. ' % (minNvisit) caption += 'Summary statistic "Area" below indicates the area on the sky which has a ' caption += 'deviation from uniformity of < %.2f.' % (cutoff1) displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order, 'caption': caption} bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 dTmax = dTmax/60.0 # need time in minutes for Nrevisits metric m2 = metrics.NRevisitsMetric(dT=dTmax) plotDict = {'xMin': 0.1, 'xMax': 2000, 'logScale': True} cutoff2 = 800 extraStats2 = [metrics.FracAboveMetric(cutoff=cutoff2, scale=scale, metricName='Area (sq deg)')] extraStats2.extend(commonSummary) caption = 'Number of consecutive visits with return times faster than %.1f minutes, ' % (dTmax) caption += 'in any filter, all proposals. ' caption += 'Summary statistic "Area" below indicates the area on the sky which has more than ' caption += '%d revisits within this time window.' % (cutoff2) summaryStats = extraStats2 displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order, 'caption': caption} bundle = metricBundles.MetricBundle(m2, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 m3 = metrics.NRevisitsMetric(dT=dTmax, normed=True) plotDict = {'xMin': 0, 'xMax': 1, 'cbarFormat': '%.1f'} cutoff3 = 0.6 extraStats3 = [metrics.FracAboveMetric(cutoff=cutoff3, scale=scale, metricName='Area (sq deg)')] extraStats3.extend(commonSummary) summaryStats = extraStats3 caption = 'Fraction of total visits where consecutive visits have return times faster ' caption += 'than %.1f minutes, in any filter, all proposals. ' % (dTmax) caption += 'Summary statistic "Area" below indicates the area on the sky which has more ' caption += 'than %d revisits within this time window.' % (cutoff3) displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order, 'caption': caption} bundle = metricBundles.MetricBundle(m3, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 # And add a histogram of the time between quick revisits. binMin = 0 binMax = 120. binsize = 3. bins_metric = np.arange(binMin / 60.0 / 24.0, (binMax + binsize) / 60. / 24., binsize / 60. / 24.) bins_plot = bins_metric * 24.0 * 60.0 m1 = metrics.TgapsMetric(bins=bins_metric, metricName='dT visits') plotDict = {'bins': bins_plot, 'xlabel': 'dT (minutes)'} caption = ('Histogram of the time between consecutive revisits (<%.1f minutes), over entire sky.' % (binMax)) displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'order': order, 'caption': caption} slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol) plotFunc = plots.SummaryHistogram() bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata, plotFuncs=[plotFunc]) bundleList.append(bundle) order += 1 ## # Trigonometric parallax and proper motion @ r=20 and r=24 slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol) sqlconstraint = '' order = 0 metric = metrics.ParallaxMetric(metricName='Parallax 20', rmag=20, seeingCol=seeingCol) summaryStats = allStats plotDict = {'cbarFormat': '%.1f', 'xMin': 0, 'xMax': 3} displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order, 'caption': 'Parallax precision at r=20. (without refraction).'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 metric = metrics.ParallaxMetric(metricName='Parallax 24', rmag=24, seeingCol=seeingCol) plotDict = {'cbarFormat': '%.1f', 'xMin': 0, 'xMax': 10} displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order, 'caption': 'Parallax precision at r=24. (without refraction).'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 metric = metrics.ParallaxMetric(metricName='Parallax Normed', rmag=24, normalize=True, seeingCol=seeingCol) plotDict = {'xMin': 0.5, 'xMax': 1.0} displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order, 'caption': 'Normalized parallax (normalized to optimum observation cadence, 1=optimal).'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage 20', rmag=20, seeingCol=seeingCol) plotDict = {} caption = "Parallax factor coverage for an r=20 star (0 is bad, 0.5-1 is good). " caption += "One expects the parallax factor coverage to vary because stars on the ecliptic " caption += "can be observed when they have no parallax offset while stars at the pole are always " caption += "offset by the full parallax offset.""" displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order, 'caption': caption} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage 24', rmag=24, seeingCol=seeingCol) plotDict = {} caption = "Parallax factor coverage for an r=24 star (0 is bad, 0.5-1 is good). " caption += "One expects the parallax factor coverage to vary because stars on the ecliptic " caption += "can be observed when they have no parallax offset while stars at the pole are always " caption += "offset by the full parallax offset.""" displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order, 'caption': caption} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 metric = metrics.ParallaxDcrDegenMetric(metricName='Parallax-DCR degeneracy 20', rmag=20, seeingCol=seeingCol) plotDict = {} caption = 'Correlation between parallax offset magnitude and hour angle an r=20 star.' caption += ' (0 is good, near -1 or 1 is bad).' displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order, 'caption': caption} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 metric = metrics.ParallaxDcrDegenMetric(metricName='Parallax-DCR degeneracy 24', rmag=24, seeingCol=seeingCol) plotDict = {} caption = 'Correlation between parallax offset magnitude and hour angle an r=24 star.' caption += ' (0 is good, near -1 or 1 is bad).' displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order, 'caption': caption} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 metric = metrics.ProperMotionMetric(metricName='Proper Motion 20', rmag=20, seeingCol=seeingCol) summaryStats = allStats plotDict = {'xMin': 0, 'xMax': 3} displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order, 'caption': 'Proper Motion precision at r=20.'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 metric = metrics.ProperMotionMetric(rmag=24, metricName='Proper Motion 24', seeingCol=seeingCol) summaryStats = allStats plotDict = {'xMin': 0, 'xMax': 10} displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order, 'caption': 'Proper Motion precision at r=24.'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 metric = metrics.ProperMotionMetric(rmag=24, normalize=True, metricName='Proper Motion Normed', seeingCol=seeingCol) plotDict = {'xMin': 0.2, 'xMax': 0.7} caption = 'Normalized proper motion at r=24. ' caption += '(normalized to optimum observation cadence - start/end. 1=optimal).' displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order, 'caption': caption} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, summaryMetrics=summaryStats, runName=runName, metadata=metadata) bundleList.append(bundle) order += 1 ## # Calculate the time uniformity in each filter, for each year. order = 0 slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol) plotFuncs = [plots.TwoDMap()] step = 0.5 bins = np.arange(0, 365.25 * 10 + 40, 40) - step metric = metrics.AccumulateUniformityMetric(bins=bins) plotDict = {'xlabel': 'Night (days)', 'xextent': [bins.min( ) + step, bins.max() + step], 'cbarTitle': 'Uniformity'} for f in filters: sqlconstraint = 'filter = "%s"' % (f) caption = 'Deviation from uniformity in %s band. ' % f caption += 'Northern Healpixels are at the top of the image.' caption += '(0=perfectly uniform, 1=perfectly nonuniform).' displayDict = {'group': uniformitygroup, 'subgroup': 'per night', 'order': filtorder[f], 'caption': caption} metadata = '%s band' % (f) + slicermetadata bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata, plotFuncs=plotFuncs) noSaveBundleList.append(bundle) ## # Depth metrics. slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol) for f in filters: propCaption = '%s band, all proposals %s' % (f, slicermetadata) sqlconstraint = 'filter = "%s"' % (f) metadata = '%s band' % (f) + slicermetadata # Number of visits. metric = metrics.CountMetric(col='observationStartMJD', metricName='NVisits') plotDict = {'xlabel': 'Number of visits', 'xMin': nvisitsRange['all'][f][0], 'xMax': nvisitsRange['all'][f][1], 'colorMin': nvisitsRange['all'][f][0], 'colorMax': nvisitsRange['all'][f][1], 'binsize': 5, 'logScale': True, 'nTicks': 4, 'colorMin': 1} summaryStats = allStats displayDict = {'group': depthgroup, 'subgroup': 'Nvisits', 'order': filtorder[f], 'caption': 'Number of visits in filter %s, %s.' % (f, propCaption)} histMerge = {'color': colors[f], 'label': '%s' % (f), 'binsize': 5, 'xMin': nvisitsRange['all'][f][0], 'xMax': nvisitsRange['all'][f][1], 'legendloc': 'upper right'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata, summaryMetrics=summaryStats) mergedHistDict['NVisits'].addBundle(bundle, plotDict=histMerge) bundleList.append(bundle) # Coadded depth. metric = metrics.Coaddm5Metric() plotDict = {'zp': benchmarkVals['coaddedDepth'][f], 'xMin': -0.8, 'xMax': 0.8, 'xlabel': 'coadded m5 - %.1f' % benchmarkVals['coaddedDepth'][f]} summaryStats = allStats histMerge = {'legendloc': 'upper right', 'color': colors[f], 'label': '%s' % f, 'binsize': .02, 'xlabel': 'coadded m5 - benchmark value'} caption = ('Coadded depth in filter %s, with %s value subtracted (%.1f), %s. ' % (f, benchmark, benchmarkVals['coaddedDepth'][f], propCaption)) caption += 'More positive numbers indicate fainter limiting magnitudes.' displayDict = {'group': depthgroup, 'subgroup': 'Coadded Depth', 'order': filtorder[f], 'caption': caption} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata, summaryMetrics=summaryStats) mergedHistDict['coaddm5'].addBundle(bundle, plotDict=histMerge) bundleList.append(bundle) # Effective time. metric = metrics.TeffMetric(metricName='Normalized Effective Time', normed=True, fiducialDepth=benchmarkVals['singleVisitDepth']) plotDict = {'xMin': 0.1, 'xMax': 1.1} summaryStats = allStats histMerge = {'legendLoc': 'upper right', 'color': colors[f], 'label': '%s' % f, 'binsize': 0.02} caption = ('"Time Effective" in filter %s, calculated with fiducial single-visit depth of %s mag. ' % (f, benchmarkVals['singleVisitDepth'][f])) caption += 'Normalized by the fiducial time effective, if every observation was at ' caption += 'the fiducial depth.' displayDict = {'group': depthgroup, 'subgroup': 'Time Eff.', 'order': filtorder[f], 'caption': caption} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata, summaryMetrics=summaryStats) mergedHistDict['NormEffTime'].addBundle(bundle, plotDict=histMerge) bundleList.append(bundle) # Put in a z=0.5 Type Ia SN, based on Cambridge 2015 workshop notebook. # Check for 1) detection in any band, 2) detection on the rise in any band, # 3) good characterization peaks = {'uPeak': 25.9, 'gPeak': 23.6, 'rPeak': 22.6, 'iPeak': 22.7, 'zPeak': 22.7, 'yPeak': 22.8} peakTime = 15. transDuration = peakTime + 30. # Days metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0, transDuration=transDuration, peakTime=peakTime, surveyDuration=runLength, metricName='SNDetection', **peaks) caption = 'Fraction of z=0.5 type Ia SN that are detected in any filter' displayDict = {'group': transgroup, 'subgroup': 'Detected', 'caption': caption} sqlconstraint = '' metadata = '' + slicermetadata plotDict = {} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata) bundleList.append(bundle) metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0, transDuration=transDuration, peakTime=peakTime, surveyDuration=runLength, nPrePeak=1, metricName='SNAlert', **peaks) caption = 'Fraction of z=0.5 type Ia SN that are detected pre-peak in any filter' displayDict = {'group': transgroup, 'subgroup': 'Detected on the rise', 'caption': caption} plotDict = {} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata) bundleList.append(bundle) metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30., transDuration=transDuration, peakTime=peakTime, surveyDuration=runLength, metricName='SNLots', nFilters=3, nPrePeak=3, nPerLC=2, **peaks) caption = 'Fraction of z=0.5 type Ia SN that are observed 6 times, 3 pre-peak, ' caption += '3 post-peak, with observations in 3 filters' displayDict = {'group': transgroup, 'subgroup': 'Well observed', 'caption': caption} sqlconstraint = 'filter="r" or filter="g" or filter="i" or filter="z" ' plotDict = {} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata) bundleList.append(bundle) # Good seeing in r/i band metrics, including in first/second years. order = 0 for tcolor, tlabel, timespan in zip(['k', 'g', 'r'], ['10 years', '1 year', '2 years'], ['', ' and night<=365', ' and night<=730']): order += 1 for f in (['r', 'i']): sqlconstraint = 'filter = "%s" %s' % (f, timespan) propCaption = '%s band, all proposals %s, over %s.' % (f, slicermetadata, tlabel) metadata = '%s band, %s' % (f, tlabel) + slicermetadata seeing_limit = 0.7 airmass_limit = 1.2 metric = metrics.MinMetric(col=seeingCol) summaryStats = allStats plotDict = {'xMin': 0.35, 'xMax': 1.5, 'color': tcolor} displayDict = {'group': seeinggroup, 'subgroup': 'Best Seeing', 'order': filtorder[f] * 100 + order, 'caption': 'Minimum FWHMgeom values in %s.' % (propCaption)} histMerge = {'label': '%s %s' % (f, tlabel), 'color': tcolor, 'binsize': 0.03, 'xMin': 0.35, 'xMax': 1.5, 'legendloc': 'upper right'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata, summaryMetrics=summaryStats) mergedHistDict['Minseeing'].addBundle(bundle, plotDict=histMerge) bundleList.append(bundle) metric = metrics.FracAboveMetric(col=seeingCol, cutoff=seeing_limit) summaryStats = allStats plotDict = {'xMin': 0, 'xMax': 1.1, 'color': tcolor} displayDict = {'group': seeinggroup, 'subgroup': 'Good seeing fraction', 'order': filtorder[f] * 100 + order, 'caption': 'Fraction of total images with FWHMgeom worse than %.1f, in %s' % (seeing_limit, propCaption)} histMerge = {'color': tcolor, 'label': '%s %s' % (f, tlabel), 'binsize': 0.05, 'legendloc': 'upper right'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata, summaryMetrics=summaryStats) mergedHistDict['seeingAboveLimit'].addBundle(bundle, plotDict=histMerge) bundleList.append(bundle) metric = metrics.MinMetric(col='airmass') plotDict = {'xMin': 1, 'xMax': 1.5, 'color': tcolor} summaryStats = allStats displayDict = {'group': airmassgroup, 'subgroup': 'Best Airmass', 'order': filtorder[f] * 100 + order, 'caption': 'Minimum airmass in %s.' % (propCaption)} histMerge = {'color': tcolor, 'label': '%s %s' % (f, tlabel), 'binsize': 0.03, 'legendloc': 'upper right'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata, summaryMetrics=summaryStats) mergedHistDict['minAirmass'].addBundle(bundle, plotDict=histMerge) bundleList.append(bundle) metric = metrics.FracAboveMetric(col='airmass', cutoff=airmass_limit) plotDict = {'xMin': 0, 'xMax': 1, 'color': tcolor} summaryStats = allStats displayDict = {'group': airmassgroup, 'subgroup': 'Low airmass fraction', 'order': filtorder[f] * 100 + order, 'caption': 'Fraction of total images with airmass higher than %.2f, in %s' % (airmass_limit, propCaption)} histMerge = {'color': tcolor, 'label': '%s %s' % ( f, tlabel), 'binsize': 0.05, 'legendloc': 'upper right'} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName, metadata=metadata, summaryMetrics=summaryStats) mergedHistDict['fracAboveAirmass'].addBundle(bundle, plotDict=histMerge) bundleList.append(bundle) # SNe metrics from UK workshop. peaks = {'uPeak': 25.9, 'gPeak': 23.6, 'rPeak': 22.6, 'iPeak': 22.7, 'zPeak': 22.7, 'yPeak': 22.8} peakTime = 15. transDuration = peakTime + 30. # Days metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0, transDuration=transDuration, peakTime=peakTime, surveyDuration=runLength, metricName='SNDetection', **peaks) caption = 'Fraction of z=0.5 type Ia SN that are detected at any point in their light curve in any filter' displayDict = {'group': sngroup, 'subgroup': 'Detected', 'caption': caption} sqlconstraint = '' plotDict = {} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName) bundleList.append(bundle) metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0, transDuration=transDuration, peakTime=peakTime, surveyDuration=runLength, nPrePeak=1, metricName='SNAlert', **peaks) caption = 'Fraction of z=0.5 type Ia SN that are detected pre-peak in any filter' displayDict = {'group': sngroup, 'subgroup': 'Detected on the rise', 'caption': caption} plotDict = {} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName) bundleList.append(bundle) metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30., transDuration=transDuration, peakTime=peakTime, surveyDuration=runLength, metricName='SNLots', nFilters=3, nPrePeak=3, nPerLC=2, **peaks) caption = 'Fraction of z=0.5 type Ia SN that are observed 6 times, 3 pre-peak, ' caption += '3 post-peak, with observations in 3 filters' displayDict = {'group': sngroup, 'subgroup': 'Well observed', 'caption': caption} sqlconstraint = 'filter="r" or filter="g" or filter="i" or filter="z" ' plotDict = {} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName) bundleList.append(bundle) propIDOrderDict = {} orderVal = 100 for propID in propids: propIDOrderDict[propID] = orderVal orderVal += 100 # Full range of dates: metric = metrics.FullRangeMetric(col='observationStartMJD') plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()] caption = 'Time span of survey.' sqlconstraint = '' plotDict = {} displayDict = {'group': rangeGroup, 'caption': caption} bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict, displayDict=displayDict, runName=runName) bundleList.append(bundle) for f in filters: for propid in propids: displayDict = {'group': rangeGroup, 'subgroup': propids[propid], 'caption': caption, 'order': filtorder[f]} md = '%s, %s' % (f, propids[propid]) sql = 'filter="%s" and proposalId=%i' % (f, propid) bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict, metadata=md, plotFuncs=plotFuncs, displayDict=displayDict, runName=runName) bundleList.append(bundle) # Alt az plots slicer = slicers.HealpixSlicer(nside=64, latCol='zenithDistance', lonCol='azimuth', useCache=False) metric = metrics.CountMetric('observationStartMJD', metricName='Nvisits as function of Alt/Az') plotDict = {} plotFuncs = [plots.LambertSkyMap()] displayDict = {'group': altAzGroup, 'caption': 'Alt Az pointing distribution'} for f in filters: for propid in propids: displayDict = {'group': altAzGroup, 'subgroup': propids[propid], 'caption': 'Alt Az pointing distribution', 'order': filtorder[f]} md = '%s, %s' % (f, propids[propid]) sql = 'filter="%s" and proposalId=%i' % (f, propid) bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict, plotFuncs=plotFuncs, metadata=md, displayDict=displayDict, runName=runName) bundleList.append(bundle) sql = '' md = 'all observations' displayDict = {'group': altAzGroup, 'subgroup': 'All Observations', 'caption': 'Alt Az pointing distribution'} bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict, plotFuncs=plotFuncs, metadata=md, displayDict=displayDict, runName=runName) bundleList.append(bundle) # Median inter-night gap (each and all filters) slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol) metric = metrics.InterNightGapsMetric(metricName='Median Inter-Night Gap') sqls = ['filter = "%s"' % f for f in filters] orders = [filtorder[f] for f in filters] orders.append(0) sqls.append('') for sql, order in zip(sqls, orders): displayDict = {'group': intergroup, 'subgroup': 'Median Gap', 'caption': 'Median gap between days', 'order': order} bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict, runName=runName) bundleList.append(bundle) # Max inter-night gap in r and all bands dslicer = slicers.HealpixSlicer(nside=nside, lonCol='ditheredRA', latCol='ditheredDec') metric = metrics.InterNightGapsMetric(metricName='Max Inter-Night Gap', reduceFunc=np.max) plotDict = {'percentileClip': 95.} for sql, order in zip(sqls, orders): displayDict = {'group': intergroup, 'subgroup': 'Max Gap', 'caption': 'Max gap between nights', 'order': order} bundle = metricBundles.MetricBundle(metric, dslicer, sql, displayDict=displayDict, plotDict=plotDict, runName=runName) bundleList.append(bundle) # largest phase gap for periods periods = [0.1, 1.0, 10., 100.] sqls = {'u': 'filter = "u"', 'r': 'filter="r"', 'g,r,i,z': 'filter="g" or filter="r" or filter="i" or filter="z"', 'all': ''} for sql in sqls: for period in periods: displayDict = {'group': phaseGroup, 'subgroup': 'period=%.2f days, filter=%s' % (period, sql), 'caption': 'Maximum phase gaps'} metric = metrics.PhaseGapMetric(nPeriods=1, periodMin=period, periodMax=period, metricName='PhaseGap, %.1f' % period) bundle = metricBundles.MetricBundle(metric, slicer, sqls[sql], displayDict=displayDict, runName=runName) bundleList.append(bundle) # NEO XY plots slicer = slicers.UniSlicer() metric = metrics.PassMetric(metricName='NEODistances') stacker = stackers.NEODistStacker() stacker2 = stackers.EclipticStacker() for f in filters: plotFunc = plots.NeoDistancePlotter(eclipMax=10., eclipMin=-10.) caption = 'Observations within 10 degrees of the ecliptic. Distance an H=22 NEO would be detected' displayDict = {'group': NEOGroup, 'subgroup': 'xy', 'order': filtorder[f], 'caption': caption} plotDict = {} sqlconstraint = 'filter = "%s"' % (f) bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, displayDict=displayDict, stackerList=[stacker, stacker2], plotDict=plotDict, plotFuncs=[plotFunc]) noSaveBundleList.append(bundle) # Solar elongation sqls = ['filter = "%s"' % f for f in filters] orders = [filtorder[f] for f in filters] sqls.append('') orders.append(0) for sql, order in zip(sqls, orders): plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()] displayDict = {'group': NEOGroup, 'subgroup': 'Solar Elongation', 'caption': 'Median solar elongation in degrees', 'order': order} metric = metrics.MedianMetric('solarElong') slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol) bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict, plotFuncs=plotFuncs) bundleList.append(bundle) plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()] displayDict = {'group': NEOGroup, 'subgroup': 'Solar Elongation', 'caption': 'Minimum solar elongation in degrees', 'order': order} metric = metrics.MinMetric('solarElong') slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol) bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict, plotFuncs=plotFuncs) bundleList.append(bundle) return (metricBundles.makeBundlesDictFromList(bundleList), mergedHistDict, metricBundles.makeBundlesDictFromList(noSaveBundleList))
def rapidRevisitBatch(colmap=None, runName='opsim', extraSql=None, extraMetadata=None, nside=64, ditherStacker=None, ditherkwargs=None): """Metrics for evaluating proper motion and parallax. Parameters ---------- colmap : dict or None, opt A dictionary with a mapping of column names. Default will use OpsimV4 column names. runName : str, opt The name of the simulated survey. Default is "opsim". nside : int, opt Nside for the healpix slicer. Default 64. extraSql : str or None, opt Additional sql constraint to apply to all metrics. extraMetadata : str or None, opt Additional metadata to apply to all results. ditherStacker: str or lsst.sims.maf.stackers.BaseDitherStacker Optional dither stacker to use to define ra/dec columns. ditherkwargs: dict, opt Optional dictionary of kwargs for the dither stacker. Returns ------- metricBundleDict """ if colmap is None: colmap = ColMapDict('opsimV4') bundleList = [] sql = '' metadata = 'All visits' # Add additional sql constraint (such as wfdWhere) and metadata, if provided. if (extraSql is not None) and (len(extraSql) > 0): sql = extraSql if extraMetadata is None: metadata = extraSql.replace('filter =', '').replace('filter=', '') metadata = metadata.replace('"', '').replace("'", '') if extraMetadata is not None: metadata = extraMetadata subgroup = metadata raCol, decCol, degrees, ditherStacker, ditherMeta = radecCols( ditherStacker, colmap, ditherkwargs) # Don't want dither info in subgroup (too long), but do want it in bundle name. metadata = combineMetadata(metadata, ditherMeta) # Set up parallax metrics. slicer = slicers.HealpixSlicer(nside=nside, lonCol=raCol, latCol=decCol, latLonDeg=degrees) subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()] displayDict = { 'group': 'Rapid Revisits', 'subgroup': subgroup, 'order': 0, 'caption': None } # Calculate the uniformity (KS test) of the quick revisits. dTmin = 40.0 # seconds dTmax = 30.0 # minutes minNvisit = 100 pixArea = float(hp.nside2pixarea(nside, degrees=True)) scale = pixArea * hp.nside2npix(nside) m1 = metrics.RapidRevisitUniformityMetric( metricName='RapidRevisitUniformity', mjdCol=colmap['mjd'], dTmin=dTmin / 60.0 / 60.0 / 24.0, dTmax=dTmax / 60.0 / 24.0, minNvisits=minNvisit) plotDict = {'xMin': 0, 'xMax': 1} cutoff1 = 0.20 summaryStats = [ metrics.FracBelowMetric(cutoff=cutoff1, scale=scale, metricName='Area (sq deg)') ] summaryStats.extend(standardSummary()) caption = 'Deviation from uniformity for short revisit timescales, between %s seconds and %s minutes, ' \ % (dTmin, dTmax) caption += 'for pointings with at least %d visits in this time range. ' % ( minNvisit) caption += 'Summary statistic "Area" indicates the area on the sky which has a ' caption += 'deviation from uniformity of < %.2f.' % (cutoff1) displayDict['caption'] = caption bundle = mb.MetricBundle(m1, slicer, sql, plotDict=plotDict, plotFuncs=subsetPlots, stackerList=[ditherStacker], metadata=metadata, displayDict=displayDict, summaryMetrics=summaryStats) bundleList.append(bundle) displayDict['order'] += 1 # Calculate the actual number of quick revisits. dTmax = dTmax # time in minutes m2 = metrics.NRevisitsMetric(dT=dTmax, mjdCol=colmap['mjd'], normed=False, metricName='RapidRevisitN') plotDict = {'xMin': 600, 'xMax': 1500, 'logScale': False} cutoff2 = 800 summaryStats = [ metrics.FracAboveMetric(cutoff=cutoff2, scale=scale, metricName='Area (sq deg)') ] summaryStats.extend(standardSummary()) caption = 'Number of consecutive visits with return times faster than %.1f minutes, ' % ( dTmax) caption += 'in any filter, all proposals. ' caption += 'Summary statistic "Area" indicates the area on the sky which has more than ' caption += '%d revisits within this time window.' % (cutoff2) displayDict['caption'] = caption bundle = mb.MetricBundle(m2, slicer, sql, plotDict=plotDict, plotFuncs=subsetPlots, stackerList=[ditherStacker], metadata=metadata, displayDict=displayDict, summaryMetrics=summaryStats) bundleList.append(bundle) displayDict['order'] += 1 # Calculate whether a healpix gets enough rapid revisits in the right windows. dTmin = 40.0 / 60.0 # (minutes) 40s minumum for rapid revisit range dTpairs = 20.0 # minutes (time when pairs should start kicking in) dTmax = 30.0 # 30 minute maximum for rapid revisit range nOne = 82 # Number of revisits between 40s-30m required nTwo = 28 # Number of revisits between 40s - tPairs required. pixArea = float(hp.nside2pixarea(nside, degrees=True)) scale = pixArea * hp.nside2npix(nside) m1 = metrics.RapidRevisitMetric(metricName='RapidRevisits', mjdCol=colmap['mjd'], dTmin=dTmin / 60.0 / 60.0 / 24.0, dTpairs=dTpairs / 60.0 / 24.0, dTmax=dTmax / 60.0 / 24.0, minN1=nOne, minN2=nTwo) plotDict = { 'xMin': 0, 'xMax': 1, 'colorMin': 0, 'colorMax': 1, 'logScale': False } cutoff1 = 0.9 summaryStats = [ metrics.FracAboveMetric(cutoff=cutoff1, scale=scale, metricName='Area (sq deg)') ] summaryStats.extend(standardSummary()) caption = 'Area that receives at least %d visits between %.3f and %.1f minutes, ' \ % (nOne, dTmin, dTmax) caption += 'with at least %d of those visits falling between %.3f and %.1f minutes. ' \ % (nTwo, dTmin, dTpairs) caption += 'Summary statistic "Area" indicates the area on the sky which meets this requirement.' displayDict['caption'] = caption bundle = mb.MetricBundle(m1, slicer, sql, plotDict=plotDict, plotFuncs=subsetPlots, stackerList=[ditherStacker], metadata=metadata, displayDict=displayDict, summaryMetrics=summaryStats) bundleList.append(bundle) displayDict['order'] += 1 # Set the runName for all bundles and return the bundleDict. for b in bundleList: b.setRunName(runName) return mb.makeBundlesDictFromList(bundleList)
def rapidRevisitBatch(colmap=None, runName='opsim', extraSql=None, extraMetadata=None, nside=64): # Allow user to add dithering. if colmap is None: colmap = ColMapDict('opsimV4') bundleList = [] sql = '' metadata = 'All visits' # Add additional sql constraint (such as wfdWhere) and metadata, if provided. if (extraSql is not None) and (len(extraSql) > 0): sql = extraSql if extraMetadata is None: metadata = extraSql.replace('filter =', '').replace('filter=', '') metadata = metadata.replace('"', '').replace("'", '') if extraMetadata is not None: metadata = extraMetadata subgroup = metadata raCol = colmap['ra'] decCol = colmap['dec'] degrees = colmap['raDecDeg'] # Set up parallax metrics. slicer = slicers.HealpixSlicer(nside=nside, lonCol=raCol, latCol=decCol, latLonDeg=degrees) subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()] displayDict = {'group': 'Rapid Revisits', 'subgroup': subgroup, 'order': 0, 'caption': None} # Calculate the uniformity (KS test) of the quick revisits. dTmin = 40.0 # seconds dTmax = 30.0 # minutes minNvisit = 100 pixArea = float(hp.nside2pixarea(nside, degrees=True)) scale = pixArea * hp.nside2npix(nside) m1 = metrics.RapidRevisitMetric(metricName='RapidRevisitUniformity', mjdCol=colmap['mjd'], dTmin=dTmin / 60.0 / 60.0 / 24.0, dTmax=dTmax / 60.0 / 24.0, minNvisits=minNvisit) plotDict = {'xMin': 0, 'xMax': 1} cutoff1 = 0.30 summaryStats = [metrics.FracBelowMetric(cutoff=cutoff1, scale=scale, metricName='Area (sq deg)')] summaryStats.extend(standardSummary()) caption = 'Deviation from uniformity for short revisit timescales, between %s and %s seconds, ' % ( dTmin, dTmax) caption += 'for pointings with at least %d visits in this time range. ' % (minNvisit) caption += 'Summary statistic "Area" indicates the area on the sky which has a ' caption += 'deviation from uniformity of < %.2f.' % (cutoff1) displayDict['caption'] = caption bundle = mb.MetricBundle(m1, slicer, sql, plotDict=plotDict, plotFuncs=subsetPlots, metadata=metadata, displayDict=displayDict, summaryMetrics=summaryStats) bundleList.append(bundle) displayDict['order'] += 1 # Calculate the actual number of quick revisits. dTmax = dTmax # time in minutes m2 = metrics.NRevisitsMetric(dT=dTmax, mjdCol=colmap['mjd'], normed=False) plotDict = {'xMin': 0.1, 'xMax': 2000, 'logScale': True} cutoff2 = 800 summaryStats = [metrics.FracAboveMetric(cutoff=cutoff2, scale=scale, metricName='Area (sq deg)')] summaryStats.extend(standardSummary()) caption = 'Number of consecutive visits with return times faster than %.1f minutes, ' % (dTmax) caption += 'in any filter, all proposals. ' caption += 'Summary statistic "Area" indicates the area on the sky which has more than ' caption += '%d revisits within this time window.' % (cutoff2) displayDict['caption'] = caption bundle = mb.MetricBundle(m2, slicer, sql, plotDict=plotDict, plotFuncs=subsetPlots, metadata=metadata, displayDict=displayDict, summaryMetrics=summaryStats) bundleList.append(bundle) displayDict['order'] += 1 # Set the runName for all bundles and return the bundleDict. for b in bundleList: b.setRunName(runName) return mb.makeBundlesDictFromList(bundleList)