示例#1
0
    def testPairFractionMetric(self):
        metric = metrics.PairFractionMetric(timeCol='mjd')
        times = np.arange(0, 200, 30) / 60. / 24.
        data = np.core.records.fromarrays([times], names='mjd')
        # These should all have pairs
        result = metric.run(data)
        self.assertEqual(result, 1.)

        # These should have none
        times = np.arange(0, 400, 100) / 60. / 24.
        data = np.core.records.fromarrays([times], names='mjd')
        result = metric.run(data)
        self.assertEqual(result, 0.)

        # If those are right, then this should be 50%
        t1 = np.arange(0, 200, 30) / 60. / 24.
        t2 = np.arange(0, 400, 100) / 60. / 24. + 1000

        times = np.append(t1, t2)
        data = np.core.records.fromarrays([times], names='mjd')
        result = metric.run(data)
        expected = np.size(t1)/float(np.size(t1)+np.size(t2))
        self.assertEqual(result, expected)
示例#2
0
def intraNight(colmap=None,
               runName='opsim',
               nside=64,
               extraSql=None,
               extraMetadata=None):
    """Generate a set of statistics about the pair/triplet/etc. rate within a night.

    Parameters
    ----------
    colmap : dict or None, opt
        A dictionary with a mapping of column names. Default will use OpsimV4 column names.
    runName : str, opt
        The name of the simulated survey. Default is "opsim".
    nside : int, opt
        Nside for the healpix slicer. Default 64.
    extraSql : str or None, opt
        Additional sql constraint to apply to all metrics.
    extraMetadata : str or None, opt
        Additional metadata to apply to all results.

    Returns
    -------
    metricBundleDict
    """

    if colmap is None:
        colmap = ColMapDict('opsimV4')

    metadata = extraMetadata
    if extraSql is None:
        extraSql = ''
    if extraSql is not None and len(extraSql) > 0:
        if metadata is None:
            metadata = extraSql

    bundleList = []
    standardStats = standardSummary()
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    # Look for the fraction of visits in gri where there are pairs within dtMin/dtMax.
    displayDict = {
        'group': 'IntraNight',
        'subgroup': 'Pairs',
        'caption': None,
        'order': 0
    }
    sql = '(%s) and (filter="g" or filter="r" or filter="i")' % extraSql
    md = 'gri'
    if metadata is not None:
        md += metadata
    dtMin = 15.0
    dtMax = 60.0
    metric = metrics.PairFractionMetric(
        mjdCol=colmap['mjd'],
        minGap=dtMin,
        maxGap=dtMax,
        metricName='Fraction of visits in pairs (%.0f-%.0f min)' %
        (dtMin, dtMax))
    slicer = slicers.HealpixSlicer(nside=nside,
                                   latCol=colmap['dec'],
                                   lonCol=colmap['ra'],
                                   latLonDeg=colmap['raDecDeg'])
    displayDict['caption'] = 'Fraction of %s visits that have a paired visit' \
                             'between %.1f and %.1f minutes away. ' % (metadata, dtMin, dtMax)
    displayDict[
        'caption'] += 'If all visits were in pairs, this fraction would be 1.'
    displayDict['order'] += 1
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             metadata=md,
                             summaryMetrics=standardStats,
                             plotFuncs=subsetPlots,
                             displayDict=displayDict)
    bundleList.append(bundle)

    # Look at the fraction of visits which have another visit within dtMax, gri.
    dtMax = 50.0
    metric = metrics.NRevisitsMetric(
        mjdCol=colmap['mjd'],
        dT=dtMax,
        normed=True,
        metricName='Fraction of visits with a revisit < %.0f min' % dtMax)
    displayDict['caption'] = 'Fraction of %s visits that have another visit ' \
                             'within %.1f min. ' % (metadata, dtMax)
    displayDict[
        'caption'] += 'If all visits were in pairs (only), this fraction would be 0.5.'
    displayDict['order'] += 1
    bundle = mb.MetricBundle(metric,
                             slicer,
                             sql,
                             metadata=md,
                             summaryMetrics=standardStats,
                             plotFuncs=subsetPlots,
                             displayDict=displayDict)
    bundleList.append(bundle)

    # Histogram of the time between revisits (all filters) within two hours.
    binMin = 0
    binMax = 120.
    binsize = 5.
    bins_metric = np.arange(binMin / 60.0 / 24.0,
                            (binMax + binsize) / 60. / 24.,
                            binsize / 60. / 24.)
    bins_plot = bins_metric * 24.0 * 60.0
    metric = metrics.TgapsMetric(bins=bins_metric,
                                 timesCol=colmap['mjd'],
                                 metricName='DeltaT Histogram')
    slicer = slicers.HealpixSlicer(nside=nside,
                                   latCol=colmap['dec'],
                                   lonCol=colmap['ra'],
                                   latLonDeg=colmap['raDecDeg'])
    plotDict = {'bins': bins_plot, 'xlabel': 'dT (minutes)'}
    displayDict['caption'] = 'Histogram of the time between consecutive visits to a given point ' \
                             'on the sky, considering visits between %.1f and %.1f minutes' % (binMin,
                                                                                               binMax)
    displayDict['order'] += 1
    plotFunc = plots.SummaryHistogram()
    bundle = mb.MetricBundle(metric,
                             slicer,
                             extraSql,
                             plotDict=plotDict,
                             displayDict=displayDict,
                             metadata=metadata,
                             plotFuncs=[plotFunc])
    bundleList.append(bundle)

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    return mb.makeBundlesDictFromList(bundleList)
示例#3
0
def glanceBatch(colmap=None,
                runName='opsim',
                nside=64,
                filternames=('u', 'g', 'r', 'i', 'z', 'y'),
                nyears=10,
                pairnside=32,
                sqlConstraint=None):
    """Generate a handy set of metrics that give a quick overview of how well a survey performed.
    This is a meta-set of other batches, to some extent.

    Parameters
    ----------
    colmap : dict, opt
        A dictionary with a mapping of column names. Default will use OpsimV4 column names.
    run_name : str, opt
        The name of the simulated survey. Default is "opsim".
    nside : int, opt
        The nside for the healpix slicers. Default 64.
    filternames : list of str, opt
        The list of individual filters to use when running metrics.
        Default is ('u', 'g', 'r', 'i', 'z', 'y').
        There is always an all-visits version of the metrics run as well.
    nyears : int (10)
        How many years to attempt to make hourglass plots for
    pairnside : int (32)
        nside to use for the pair fraction metric (it's slow, so nice to use lower resolution)
    sqlConstraint : str or None, opt
        Additional SQL constraint to apply to all metrics.

    Returns
    -------
    metricBundleDict
    """
    if isinstance(colmap, str):
        raise ValueError('colmap must be a dictionary, not a string')

    if colmap is None:
        colmap = ColMapDict('opsimV4')

    bundleList = []

    if sqlConstraint is None:
        sqlC = ''
    else:
        sqlC = '(%s) and' % sqlConstraint

    sql_per_filt = [
        '%s %s="%s"' % (sqlC, colmap['filter'], filtername)
        for filtername in filternames
    ]
    sql_per_and_all_filters = [sqlConstraint] + sql_per_filt

    standardStats = standardSummary()
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    # Super basic things
    displayDict = {'group': 'Basic Stats', 'order': 1}
    sql = sqlConstraint
    slicer = slicers.UniSlicer()
    # Length of Survey
    metric = metrics.FullRangeMetric(col=colmap['mjd'],
                                     metricName='Length of Survey (days)')
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # Total number of filter changes
    metric = metrics.NChangesMetric(col=colmap['filter'],
                                    orderBy=colmap['mjd'])
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # Total open shutter fraction
    metric = metrics.OpenShutterFractionMetric(
        slewTimeCol=colmap['slewtime'],
        expTimeCol=colmap['exptime'],
        visitTimeCol=colmap['visittime'])
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # Total effective exposure time
    metric = metrics.TeffMetric(m5Col=colmap['fiveSigmaDepth'],
                                filterCol=colmap['filter'],
                                normed=True)
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            displayDict=displayDict)
        bundleList.append(bundle)

    # Number of observations, all and each filter
    metric = metrics.CountMetric(col=colmap['mjd'],
                                 metricName='Number of Exposures')
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            displayDict=displayDict)
        bundleList.append(bundle)

    # The alt/az plots of all the pointings
    slicer = slicers.HealpixSlicer(nside=nside,
                                   latCol='zenithDistance',
                                   lonCol=colmap['az'],
                                   latLonDeg=colmap['raDecDeg'],
                                   useCache=False)
    stacker = stackers.ZenithDistStacker(altCol=colmap['alt'],
                                         degrees=colmap['raDecDeg'])
    metric = metrics.CountMetric(colmap['mjd'],
                                 metricName='Nvisits as function of Alt/Az')
    plotFuncs = [plots.LambertSkyMap()]
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            plotFuncs=plotFuncs,
                                            displayDict=displayDict,
                                            stackerList=[stacker])
        bundleList.append(bundle)

    # Things to check per night
    # Open Shutter per night
    displayDict = {'group': 'Pointing Efficency', 'order': 2}
    slicer = slicers.OneDSlicer(sliceColName=colmap['night'], binsize=1)
    metric = metrics.OpenShutterFractionMetric(
        slewTimeCol=colmap['slewtime'],
        expTimeCol=colmap['exptime'],
        visitTimeCol=colmap['visittime'])
    sql = sqlConstraint
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        summaryMetrics=standardStats,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # Number of filter changes per night
    slicer = slicers.OneDSlicer(sliceColName=colmap['night'], binsize=1)
    metric = metrics.NChangesMetric(col=colmap['filter'],
                                    orderBy=colmap['mjd'],
                                    metricName='Filter Changes')
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        summaryMetrics=standardStats,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # A few basic maps
    # Number of observations, coadded depths
    displayDict = {'group': 'Basic Maps', 'order': 3}
    slicer = slicers.HealpixSlicer(nside=nside,
                                   latCol=colmap['dec'],
                                   lonCol=colmap['ra'],
                                   latLonDeg=colmap['raDecDeg'])
    metric = metrics.CountMetric(col=colmap['mjd'])
    plotDict = {'percentileClip': 95.}
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            summaryMetrics=standardStats,
                                            displayDict=displayDict,
                                            plotDict=plotDict)
        bundleList.append(bundle)

    metric = metrics.Coaddm5Metric(m5Col=colmap['fiveSigmaDepth'])
    for sql in sql_per_and_all_filters:
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            summaryMetrics=standardStats,
                                            displayDict=displayDict)
        bundleList.append(bundle)

    # Checking a few basic science things
    # Maybe check astrometry, observation pairs, SN
    plotDict = {'percentileClip': 95.}
    displayDict = {'group': 'Science', 'subgroup': 'Astrometry', 'order': 4}

    stackerList = []
    stacker = stackers.ParallaxFactorStacker(raCol=colmap['ra'],
                                             decCol=colmap['dec'],
                                             degrees=colmap['raDecDeg'],
                                             dateCol=colmap['mjd'])
    stackerList.append(stacker)

    # Maybe parallax and proper motion, fraction of visits in a good pair for SS
    displayDict['caption'] = r'Parallax precision of an $r=20$ flat SED star'
    metric = metrics.ParallaxMetric(m5Col=colmap['fiveSigmaDepth'],
                                    filterCol=colmap['filter'],
                                    seeingCol=colmap['seeingGeom'])
    sql = sqlConstraint
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        plotFuncs=subsetPlots,
                                        displayDict=displayDict,
                                        stackerList=stackerList,
                                        plotDict=plotDict)
    bundleList.append(bundle)
    displayDict[
        'caption'] = r'Proper motion precision of an $r=20$ flat SED star'
    metric = metrics.ProperMotionMetric(m5Col=colmap['fiveSigmaDepth'],
                                        mjdCol=colmap['mjd'],
                                        filterCol=colmap['filter'],
                                        seeingCol=colmap['seeingGeom'])
    bundle = metricBundles.MetricBundle(metric,
                                        slicer,
                                        sql,
                                        plotFuncs=subsetPlots,
                                        displayDict=displayDict,
                                        plotDict=plotDict)
    bundleList.append(bundle)

    # Solar system stuff
    displayDict['caption'] = 'Fraction of observations that are in pairs'
    displayDict['subgroup'] = 'Solar System'

    sql = '%s (filter="g" or filter="r" or filter="i")' % sqlC
    pairSlicer = slicers.HealpixSlicer(nside=pairnside,
                                       latCol=colmap['dec'],
                                       lonCol=colmap['ra'],
                                       latLonDeg=colmap['raDecDeg'])
    metric = metrics.PairFractionMetric(mjdCol=colmap['mjd'])
    bundle = metricBundles.MetricBundle(metric,
                                        pairSlicer,
                                        sql,
                                        plotFuncs=subsetPlots,
                                        displayDict=displayDict)
    bundleList.append(bundle)

    # stats from the note column
    if 'note' in colmap.keys():
        displayDict = {'group': 'Basic Stats', 'subgroup': 'Percent stats'}
        metric = metrics.StringCountMetric(col=colmap['note'],
                                           percent=True,
                                           metricName='Percents')
        sql = ''
        slicer = slicers.UniSlicer()
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            displayDict=displayDict)
        bundleList.append(bundle)
        displayDict['subgroup'] = 'Count Stats'
        metric = metrics.StringCountMetric(col=colmap['note'],
                                           metricName='Counts')
        bundle = metricBundles.MetricBundle(metric,
                                            slicer,
                                            sql,
                                            displayDict=displayDict)
        bundleList.append(bundle)

    for b in bundleList:
        b.setRunName(runName)

    # Add hourglass plots.
    hrDict = hourglassBatch(colmap=colmap,
                            runName=runName,
                            nyears=nyears,
                            extraSql=sqlConstraint)

    # Add basic slew stats.
    try:
        slewDict = slewBasics(colmap=colmap, runName=runName)
    except KeyError as e:
        warnings.warn(
            'Could not add slew stats: missing required key %s from colmap' %
            (e))

    bd = metricBundles.makeBundlesDictFromList(bundleList)
    bd.update(slewDict)
    bd.update(hrDict)
    return bd
示例#4
0
def intraNight(colmap=None, runName='opsim', nside=64, extraSql=None, extraMetadata=None,
               slicer=None, display_group='IntraNight', subgroup='Pairs'):
    """Generate a set of statistics about the pair/triplet/etc. rate within a night.

    Parameters
    ----------
    colmap : dict or None, opt
        A dictionary with a mapping of column names. Default will use OpsimV4 column names.
    runName : str, opt
        The name of the simulated survey. Default is "opsim".
    nside : int, opt
        Nside for the healpix slicer. Default 64.
    extraSql : str or None, opt
        Additional sql constraint to apply to all metrics.
    extraMetadata : str or None, opt
        Additional metadata to apply to all results.
    slicer : slicer object (None)
        Optinally use something other than a HealpixSlicer

    Returns
    -------
    metricBundleDict
    """

    if colmap is None:
        colmap = ColMapDict('opsimV4')

    metadata = extraMetadata
    if extraSql is not None and len(extraSql) > 0:
        if metadata is None:
            metadata = extraSql

    raCol, decCol, degrees, ditherStacker, ditherMeta = radecCols(None, colmap, None)
    metadata = combineMetadata(metadata, ditherMeta)

    bundleList = []
    standardStats = standardSummary()
    subsetPlots = [plots.HealpixSkyMap(), plots.HealpixHistogram()]

    if slicer is None:
        slicer = slicers.HealpixSlicer(nside=nside, latCol=decCol, lonCol=raCol, latLonDeg=degrees)

    # Look for the fraction of visits in gri where there are pairs within dtMin/dtMax.
    displayDict = {'group': display_group, 'subgroup': subgroup, 'caption': None, 'order': 0}
    if extraSql is not None and len(extraSql) > 0:
        sql = '(%s) and (filter="g" or filter="r" or filter="i")' % extraSql
    else:
        sql = 'filter="g" or filter="r" or filter="i"'
    md = 'gri'
    if metadata is not None:
        md += ' ' + metadata
    dtMin = 10.0
    dtMax = 60.0
    metric = metrics.PairFractionMetric(mjdCol=colmap['mjd'], minGap=dtMin, maxGap=dtMax,
                                        metricName='Fraction of visits in pairs (%.0f-%.0f min)' % (dtMin,
                                                                                                    dtMax))
    displayDict['caption'] = 'Fraction of %s visits that have a paired visit' \
                             'between %.1f and %.1f minutes away. ' % (md, dtMin, dtMax)
    displayDict['caption'] += 'If all visits were in pairs, this fraction would be 1.'
    displayDict['order'] += 1
    bundle = mb.MetricBundle(metric, slicer, sql, metadata=md, summaryMetrics=standardStats,
                             plotFuncs=subsetPlots, displayDict=displayDict)
    bundleList.append(bundle)

    dtMin = 20.0
    dtMax = 90.0
    metric = metrics.PairFractionMetric(mjdCol=colmap['mjd'], minGap=dtMin, maxGap=dtMax,
                                        metricName='Fraction of visits in pairs (%.0f-%.0f min)' % (dtMin,
                                                                                                    dtMax))
    displayDict['caption'] = 'Fraction of %s visits that have a paired visit' \
                             'between %.1f and %.1f minutes away. ' % (md, dtMin, dtMax)
    displayDict['caption'] += 'If all visits were in pairs, this fraction would be 1.'
    displayDict['order'] += 1
    bundle = mb.MetricBundle(metric, slicer, sql, metadata=md, summaryMetrics=standardStats,
                             plotFuncs=subsetPlots, displayDict=displayDict)
    bundleList.append(bundle)

    # Look at the fraction of visits which have another visit within dtMax, gri.
    dtMax = 60.0
    metric = metrics.NRevisitsMetric(mjdCol=colmap['mjd'], dT=dtMax, normed=True,
                                     metricName='Fraction of visits with a revisit < %.0f min' % dtMax)
    displayDict['caption'] = 'Fraction of %s visits that have another visit ' \
                             'within %.1f min. ' % (md, dtMax)
    displayDict['caption'] += 'If all visits were in pairs (only), this fraction would be 0.5.'
    displayDict['order'] += 1
    bundle = mb.MetricBundle(metric, slicer, sql, metadata=md, summaryMetrics=standardStats,
                             plotFuncs=subsetPlots, displayDict=displayDict)
    bundleList.append(bundle)

    # Intranight gap map, all filters. Returns value in hours.
    metric = metrics.IntraNightGapsMetric(metricName='Median Intra-Night Gap', mjdCol=colmap['mjd'],
                                          reduceFunc=np.median)
    displayDict['caption'] = 'Median gap between consecutive visits within a night, all bands'
    if metadata is None or len(metadata) == 0:
        displayDict['caption'] += ', all proposals.'
    else:
        displayDict['caption'] += ', %s.' % metadata
    displayDict['order'] += 1
    plotDict = {'percentileClip': 95}
    bundle = mb.MetricBundle(metric, slicer, extraSql, metadata=metadata, displayDict=displayDict,
                             plotFuncs=subsetPlots, plotDict=plotDict,
                             summaryMetrics=standardStats)
    bundleList.append(bundle)

    # Histogram the number of visits per night.
    countbins = np.arange(0, 10, 1)
    metric = metrics.NVisitsPerNightMetric(nightCol=colmap['night'], bins=countbins,
                                           metricName="NVisitsPerNight")
    plotDict = {'bins': countbins, 'xlabel': 'Number of visits each night'}
    displayDict['caption'] = 'Histogram of the number of visits in each night, per point on the sky'
    if metadata is None or len(metadata) == 0:
        displayDict['caption'] += ', all proposals.'
    else:
        displayDict['caption'] += ', %s.' % metadata
    displayDict['order'] = 0
    plotFunc = plots.SummaryHistogram()
    bundle = mb.MetricBundle(metric, slicer, extraSql, plotDict=plotDict,
                             displayDict=displayDict, metadata=metadata, plotFuncs=[plotFunc])
    bundleList.append(bundle)

    # Histogram of the time between revisits (all filters) within two hours.
    binMin = 0
    binMax = 120.
    binsize = 5.
    bins_metric = np.arange(binMin / 60.0 / 24.0, (binMax + binsize) / 60. / 24., binsize / 60. / 24.)
    bins_plot = bins_metric * 24.0 * 60.0
    metric = metrics.TgapsMetric(bins=bins_metric, timesCol=colmap['mjd'], metricName='DeltaT Histogram')
    plotDict = {'bins': bins_plot, 'xlabel': 'dT (minutes)'}
    displayDict['caption'] = 'Histogram of the time between consecutive visits to a given point ' \
                             'on the sky, considering visits between %.1f and %.1f minutes' % (binMin,
                                                                                               binMax)
    if metadata is None or len(metadata) == 0:
        displayDict['caption'] += ', all proposals.'
    else:
        displayDict['caption'] += ', %s.' % metadata
    displayDict['order'] += 1
    plotFunc = plots.SummaryHistogram()
    bundle = mb.MetricBundle(metric, slicer, extraSql, plotDict=plotDict,
                             displayDict=displayDict, metadata=metadata, plotFuncs=[plotFunc])
    bundleList.append(bundle)

    # Set the runName for all bundles and return the bundleDict.
    for b in bundleList:
        b.setRunName(runName)
    plotBundles = None
    return mb.makeBundlesDictFromList(bundleList), plotBundles