示例#1
0
def train_epoc(trn, model, criterion, optimizer, scheduler):

    # Train the model
    model.train()
    train_loss = 0
    train_acc = 0

    for label, data_x, data_len in tqdm(trn):
        #print("label",label)
        #print("data_x",data_x)
        #print("data_len",data_len)
        optimizer.zero_grad()
        label = label.to(device)
        data_len = data_len.to(device)
        for i in range(len(data_x)):
            #data_x[i]=rnn_utils.pack_padded_sequence(data_x[i].to(device),data_len,batch_first=True,enforce_sorted=False)
            data_x[i] = data_x[i].to(device)
        output = model(data_x, data_len)
        loss = criterion(output, label)
        train_loss += loss.item()
        loss.backward()
        optimizer.step()
        train_acc += (output.argmax(1) == label).sum().item()

    # Adjust the learning rate train_acc
    scheduler.step()

    return train_loss, train_acc
示例#2
0
def stocks_prediction(prediction_days, stock):
    print(f"Executing prediction for {stock}")
    yf.pdr_override()
    now = time.strftime('%Y-%m-%d', time.localtime(time.time() + 86400))
    data = pdr.get_data_yahoo(stock, start=config.HISTORY_START_DATE, end=now)
    db = database.Database()
    db.use("taurus")
    db.panda_write("taurus", data, stock)

    # Save Simple Prediction to DB
    prediction_results = prediction.simple_prediction(prediction_days, data)
    simple_data = _save("Prediction", prediction_results, stock)

    model = lstm.model(prediction_days, data)
    # Save LSTM Prediction to DB
    lstm_results = lstm.predict(model[0], model[1], model[2], model[3],
                                model[4])
    lstm_data = _save("LSTMPrediction", lstm_results, stock)

    # Save Root Deviation to DB
    rmse_results = lstm.root_deviation(lstm_results, model[0])
    # The var writing is on the opposite way so I can generate a query on influxdb for all the deviations.
    _save(stock, rmse_results, "Deviation")

    return simple_data, lstm_data
示例#3
0
def val_epoc(tst, model, criterion):
    model.eval()
    loss = 0
    acc = 0
    for label, data_x, data_len in tst:
        label = label.to(device)
        data_len = data_len.to(device)
        for i in range(len(data_x)):
            #data_x[i]=rnn_utils.pack_padded_sequence(data_x[i].to(device),data_len,batch_first=True,enforce_sorted=False)
            data_x[i] = data_x[i].to(device)
        with torch.no_grad():
            output = model(data_x, data_len)
            loss = criterion(output, label)
            loss += loss.item()
            acc += (output.argmax(1) == label).sum().item()

    return loss, acc
示例#4
0
scaler, raw_data_scaled = scale(data_raw, split_pct)  # Scale all of the data
data_scaled = timeseries_to_supervised(
    raw_data_scaled, timesteps)  # turn it into timeshifted data
x_train, y_train, x_test, y_test = split_and_reshape(
    data_scaled, raw_data_scaled, split_pct, timesteps,
    data_dim)  # Uses shifted data for x and original data for y

train_losses_in_experiments = np.zeros([len(experiment_neurons), epochs])
test_losses_in_experiments = np.zeros(len(experiment_neurons))
experiment = 0
seed = 0

for neurons in experiment_neurons:
    print('Experiment %d Beginning.' % (experiment))

    this_model = model(neurons, timesteps, data_dim)
    train_loss_list = np.zeros([runs, epochs])
    test_loss_list = np.zeros(runs)

    for r in range(runs):
        np.random.seed(seed)

        model_history = this_model.fit(x_train,
                                       y_train,
                                       batch_size=batch_size,
                                       epochs=epochs,
                                       verbose=0,
                                       shuffle=False)
        train_loss = model_history.history['loss']
        train_loss_list[r, :] = train_loss
示例#5
0
def main(ticker, epoch, timeframe, indictors):
    stock = pd.DataFrame(index=normalizedCloseddf.index)
    #Extract the ticker
    #Stick all indicators in the combination which fits the company to dataframe "stock"
    for indictor in indictors:
        if str(indictor) == str(IXIC):
            stock = stock.join(IXIC)
        stock = stock.join(indictor.filter(regex=ticker))
    #startDate is marked the date, user wants to start the dataset.
    startDate = stock.index.get_loc('2005-01-01')
    stock = stock.drop(stock.index[0:startDate])
    print(stock.head(5))

    #this function will load the first 20% of data as testing and 80% till the latest as training data
    X_train, y_train, X_test, y_test = lstm.load_dataforward(
        stock[::-1], timeframe)
    #this function will load the last 20% of data as testing and 80% from the beginning as training data
    #X_train, y_train, X_test, y_test = lstm.load_data(stock[::-1], 30)
    print("X_train", X_train.shape)
    print("y_train", y_train.shape)
    print("X_test", X_test.shape)
    print("y_test", y_test.shape)
    #tbcallback will generate a graph which can show back in tensorboard
    tbCallBack = keras.callbacks.TensorBoard(log_dir="./Graph",
                                             histogram_freq=0,
                                             write_graph=True,
                                             write_images=True)
    #model will have three variables, the first variable is number of indicators, the second variable is the timeframe
    model = lstm.model([len(indictors), timeframe])
    model.fit(X_train,
              y_train,
              batch_size=150,
              nb_epoch=epoch,
              validation_split=0.2,
              callbacks=[tbCallBack],
              verbose=1)
    model.save(ticker + '.h5')

    trainScore = model.evaluate(X_train, y_train, verbose=0)
    print('Train Score: %.2f MSE (%.2f RMSE)' %
          (trainScore[0], math.sqrt(trainScore[0])))

    testScore = model.evaluate(X_test, y_test, verbose=0)
    print('Test Score: %.2f MSE (%.2f RMSE)' %
          (testScore[0], math.sqrt(testScore[0])))
    prediction = model.predict(X_test)
    prediction = prediction[::-1]
    y_test = y_test[::-1]
    peakperiod = 5
    peaksdetect = peakdetect(prediction, lookahead=peakperiod)
    peaksdetect = np.array(peaksdetect)
    peaks = peaksdetect[0]
    toughs = peaksdetect[1]
    peakpoints = [item[1] for item in peaks]
    peakdays = [item[0] for item in peaks]
    toughpoints = [item[1] for item in toughs]
    toughdays = [item[0] for item in toughs]
    plt.figure(figsize=(18, 7))
    plt.plot(prediction, color='red', label='prediction')
    plt.scatter(peakdays, peakpoints, color='red', marker='x')
    plt.scatter(toughdays, toughpoints, color='green', marker='o')
    plt.plot(y_test, color='blue', label='y_test')
    plt.legend(loc='upper left')
    plt.tight_layout()
    plt.subplots_adjust(top=0.95, left=0.08, bottom=0.08)
    strIndictors = ''.join(str(e) for e in indictors)
    title = epoch, " epoch ", timeframe, ' timeframe', ticker, list(stock)
    plt.title(title)
    plt.xlabel("Time")
    plt.ylabel("Price")
    listIndicators = list(stock)
    epochstr = str(epoch)
    timeframestr = str(timeframe)
    peakperiod = str(peakperiod)
    strIndicators = ''.join(listIndicators)
    csvname = epochstr + ' e' + timeframestr + ' t' + strIndicators + ' peak ' + peakperiod + '.csv'
    np.savetxt(csvname, np.c_[prediction, y_test], delimiter=",")
    filename = epochstr + ' e' + timeframestr + ' t' + strIndicators + ' peak ' + peakperiod + '.png'
    plt.savefig(filename)
示例#6
0

if __name__ == '__main__':
    print(sys.argv)
    if len(sys.argv) == 1:
        print(' \"python run_lstm.py -train\"   train lstm\n '
              ' \"python run_lstm.py -rescore\" rescore nbest\n'
              ' \"python run_lstm.py -wer\"         compute WER')

    fres = wb.FRes('result.txt')
    for tsize in [1, 2, 4]:
        tskdir = '{}/'.format(tsize)
        print(tskdir)
        workdir = tskdir + 'lstmlm/'
        bindir = '../../tools/lstm'
        model = lstm.model(bindir, workdir)

        datas = data(tskdir)
        hidden = 250
        dropout = 0
        epoch = 10
        gpu = 1
        write_model = workdir + 'h{}_dropout{}_epoch{}.lstm'.format(
            hidden, dropout, epoch)
        write_name = '{}:LSTM:h{}d{}epoch{}'.format(tsize, hidden, dropout,
                                                    epoch)
        config = '-hidden {} -dropout {} -epoch {}  -gpu {}'.format(
            hidden, dropout, epoch, gpu)

        if '-train' in sys.argv or '-all' in sys.argv:
            if os.path.exists(write_model):