示例#1
0
db.close()

exit()

update_time_0 = process_time()
for i in range(0, 10000):
    query.update(choice(keys), *(choice(update_cols)))
update_time_1 = process_time()
print("Updating 10k records took:  \t\t\t", update_time_1 - update_time_0)

# Measuring Select Performance
select_time_0 = process_time()
for i in range(0, 10000):
    query.select(choice(keys), [1, 1, 1, 1, 1])
select_time_1 = process_time()
print("Selecting 10k records took:  \t\t\t", select_time_1 - select_time_0)

# Measuring Aggregate Performance
agg_time_0 = process_time()
for i in range(0, 10000, 100):
    result = query.sum(i, 100, randrange(0, 5))
agg_time_1 = process_time()
print("Aggregate 10k of 100 record batch took:\t", agg_time_1 - agg_time_0)

# Measuring Delete Performance
delete_time_0 = process_time()
for i in range(0, 10000):
    query.delete(906659671 + i)
delete_time_1 = process_time()
print("Deleting 10k records took:  \t\t\t", delete_time_1 - delete_time_0)
示例#2
0
            records[key][j] = value
keys = sorted(list(records.keys()))
# for key in keys:
#     print(records[key])
#     print(records[key])

for key in keys:
    record = query.select(key, 0, [1, 1, 1, 1, 1])[0]
    error = False
    for i, column in enumerate(record.columns):
        if column != records[key][i]:
            error = True
    if error:
        print('select error on', key, ':', record, ', correct:', records[key])
print("Select finished")

deleted_keys = sample(keys, 100)
for key in deleted_keys:
    query.delete(key)
    records.pop(key, None)

for i in range(0, 100):
    r = sorted(sample(range(0, len(keys)), 2))
    column_sum = sum(map(lambda x: records[x][0] if x in records else 0, keys[r[0]: r[1] + 1]))
    result = query.sum(keys[r[0]], keys[r[1]], 0)
    if column_sum != result:
        print('sum error on [', keys[r[0]], ',', keys[r[1]], ']: ', result, ', correct: ', column_sum)
print("Aggregate finished")

# db.close()
        updated_columns[i] = value
        query.update(key, *updated_columns)
update_time_1 = process_time()
print("Updating 5k records of total 20000 times took:  \t\t\t",
      update_time_1 - update_time_0)

# Measuring Aggregate Performance
num_batch = 1000
batch_size = 100
keys = sorted(list(records.keys()))
agg_time_0 = process_time()
for c in range(0, grades_table.num_columns):
    for i in range(0, num_batch):
        r0 = sample(range(0, len(keys) - batch_size), 1)
        r = [r0[0], r0[0] + batch_size]
        result = query.sum(keys[r[0]], keys[r[1]], c)
agg_time_1 = process_time()
print("Aggregate 1000 of 100 record batch for each column took:\t",
      agg_time_1 - agg_time_0)

# Measuring Delete Performance
delete_time_0 = process_time()
keys = sorted(list(records.keys()))
for mykey in keys:
    query.delete(mykey)
delete_time_1 = process_time()
print("Deleting 5k records took:  \t\t\t", delete_time_1 - delete_time_0)
db.close()

os.system("rm -rf ECS165")