示例#1
0
def steepest_descent_learn_filter_resnet18_newiou(filter_size=1, optim_iter=3, optim_init_step=1.0, optim_init_reg=0.01, output_activation=None,
                                 classification_layer='layer3', backbone_pretrained=False, clf_feat_blocks=1,
                                 clf_feat_norm=True, init_filter_norm=False, final_conv=False,
                                 out_feature_dim=256, init_gauss_sigma=1.0, num_dist_bins=5, bin_displacement=1.0, test_loss=None,
                                           mask_init_factor=4.0, iou_input_dim=(256,256), iou_inter_dim=(256,256),
                                                  jitter_sigma_factor=None, train_backbone=True):
    # backbone
    backbone_net = backbones.resnet18(pretrained=backbone_pretrained)

    norm_scale = math.sqrt(1.0 / (out_feature_dim * filter_size * filter_size))

    # classifier
    clf_feature_extractor = clf_features.residual_basic_block(num_blocks=clf_feat_blocks, l2norm=clf_feat_norm,
                                                              final_conv=final_conv, norm_scale=norm_scale,
                                                              out_dim=out_feature_dim)
    initializer = clf_initializer.FilterInitializerLinear(filter_size=filter_size, filter_norm=init_filter_norm, feature_dim=out_feature_dim)
    optimizer = clf_optimizer.SteepestDescentLearn(num_iter=optim_iter, filter_size=filter_size, init_step_length=optim_init_step,
                                                   init_filter_reg=optim_init_reg, feature_dim=out_feature_dim,
                                                   init_gauss_sigma=init_gauss_sigma, num_dist_bins=num_dist_bins,
                                                   bin_displacement=bin_displacement, test_loss=test_loss, mask_init_factor=mask_init_factor)
    classifier = target_clf.LinearFilter(filter_size=filter_size, filter_initializer=initializer,
                                         filter_optimizer=optimizer, feature_extractor=clf_feature_extractor,
                                         output_activation=output_activation, jitter_sigma_factor=jitter_sigma_factor)

    # Bounding box regressor
    bb_regressor = bbmodels.AtomIoUNet(pred_input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)

    net = OptimTracker(feature_extractor=backbone_net, classifier=classifier, bb_regressor=bb_regressor,
                       classification_layer=classification_layer, bb_regressor_layer=['layer2', 'layer3'], train_feature_extractor=train_backbone)
    return net
示例#2
0
def steepest_descent_learn_filter_resnet50_newiou(filter_size=1, optim_iter=3, optim_init_step=1.0, optim_init_reg=0.01, output_activation=None,
                                 classification_layer='layer3', backbone_pretrained=False, clf_feat_blocks=1,
                                 clf_feat_norm=True, init_filter_norm=False, final_conv=False,
                                 out_feature_dim=256, init_gauss_sigma=1.0, num_dist_bins=5, bin_displacement=1.0, test_loss=None,
                                           mask_init_factor=4.0, iou_input_dim=(256,256), iou_inter_dim=(256,256),
                                                  jitter_sigma_factor=None):
    # backbone
    backbone_net = backbones.resnet50(pretrained=backbone_pretrained)

    norm_scale = math.sqrt(1.0 / (out_feature_dim * filter_size * filter_size))

    
    # classifier
    clf_feature_extractor = clf_features.residual_bottleneck_comb(num_blocks=clf_feat_blocks, l2norm=clf_feat_norm,
                                                              final_conv=final_conv, norm_scale=norm_scale,
                                                              out_dim=out_feature_dim)
    initializer = clf_initializer.FilterInitializerLinear(filter_size=filter_size, filter_norm=init_filter_norm, feature_dim=out_feature_dim)
    optimizer = clf_optimizer.SteepestDescentLearn(num_iter=optim_iter, filter_size=filter_size, init_step_length=optim_init_step,
                                                   init_filter_reg=optim_init_reg, feature_dim=out_feature_dim,
                                                   init_gauss_sigma=init_gauss_sigma, num_dist_bins=num_dist_bins,
                                                   bin_displacement=bin_displacement, test_loss=test_loss, mask_init_factor=mask_init_factor)
    classifier = target_clf.LinearFilter(filter_size=filter_size, filter_initializer=initializer,
                                         filter_optimizer=optimizer, feature_extractor=clf_feature_extractor,
                                         output_activation=output_activation, jitter_sigma_factor=jitter_sigma_factor)    
    # Bounding box regressor
    # combine RGB and TIR by 2*
    bb_regressor = bbmodels.AtomIoUNet(input_dim=(4*128,4*256), pred_input_dim=iou_input_dim, pred_inter_dim=iou_inter_dim)
    # load pretrained model
    pretrainmodel_path='/home/lichao/projects/pytracking_lichao/pytracking/DiMP_nets/sdlearn_300_onlytestloss_lr_causal_mg30_iou_nocf_res50_lfilt512_coco/OptimTracker_ep0040.pth.tar'
    pretrainmodel = loading.torch_load_legacy(pretrainmodel_path)['net']
    usepretrain = True; updback = True; updcls = True; updbb = True

    if usepretrain:
        if updback:
            # update backbone
            backbone_dict = backbone_net.state_dict()
            pretrain_dict = {k[len('feature_extractor.'):]: v for k, v in pretrainmodel.items() if k[len('feature_extractor.'):] in backbone_dict}
            backbone_net.load_state_dict(pretrain_dict)

        if updcls:
            # update classifier
            pretrainmodel['classifier.feature_extractor.0.weight']=torch.cat((pretrainmodel['classifier.feature_extractor.0.weight'],pretrainmodel['classifier.feature_extractor.0.weight']),1)
            classifier_dict = classifier.state_dict()
            pretrain_dict = {k[len('classifier.'):]: v for k, v in pretrainmodel.items() if k[len('classifier.'):] in classifier_dict}
            #classifier_dict.update(pretrain_dict)
            classifier.load_state_dict(pretrain_dict)
        if updbb:
            # update Bounding box regressor
            
            bb_regressor_dict = bb_regressor.state_dict()
            pretrain_dict = {k[len('bb_regressor.'):]: v for k, v in pretrainmodel.items() if k[len('bb_regressor.'):] in bb_regressor_dict}
            bb_regressor.load_state_dict(pretrain_dict)

    net = OptimTracker(feature_extractor=backbone_net, classifier=classifier, bb_regressor=bb_regressor,
                       classification_layer=classification_layer, bb_regressor_layer=['layer2', 'layer3'])
    return net
示例#3
0
def kysnet_res50(filter_size=4,
                 optim_iter=3,
                 appearance_feature_dim=512,
                 optim_init_step=0.9,
                 optim_init_reg=0.1,
                 classification_layer='layer3',
                 backbone_pretrained=True,
                 clf_feat_blocks=0,
                 clf_feat_norm=True,
                 final_conv=True,
                 init_filter_norm=False,
                 mask_init_factor=3.0,
                 score_act='relu',
                 target_mask_act='sigmoid',
                 num_dist_bins=100,
                 bin_displacement=0.1,
                 detach_length=float('Inf'),
                 train_feature_extractor=True,
                 train_iounet=True,
                 iou_input_dim=(256, 256),
                 iou_inter_dim=(256, 256),
                 cv_kernel_size=3,
                 cv_max_displacement=9,
                 cv_stride=1,
                 init_gauss_sigma=1.0,
                 state_dim=8,
                 representation_predictor_dims=(64, 32),
                 gru_ksz=3,
                 conf_measure='max',
                 dimp_thresh=None):

    # ######################## backbone ########################
    backbone_net = backbones.resnet50(pretrained=backbone_pretrained)

    norm_scale = math.sqrt(
        1.0 / (appearance_feature_dim * filter_size * filter_size))

    # ######################## classifier ########################
    clf_feature_extractor = clf_features.residual_bottleneck(
        num_blocks=clf_feat_blocks,
        l2norm=clf_feat_norm,
        final_conv=final_conv,
        norm_scale=norm_scale,
        out_dim=appearance_feature_dim)

    # Initializer for the DiMP classifier
    initializer = clf_initializer.FilterInitializerLinear(
        filter_size=filter_size,
        filter_norm=init_filter_norm,
        feature_dim=appearance_feature_dim)

    # Optimizer for the DiMP classifier
    optimizer = clf_optimizer.DiMPSteepestDescentGN(
        num_iter=optim_iter,
        feat_stride=16,
        init_step_length=optim_init_step,
        init_filter_reg=optim_init_reg,
        init_gauss_sigma=init_gauss_sigma,
        num_dist_bins=num_dist_bins,
        bin_displacement=bin_displacement,
        mask_init_factor=mask_init_factor,
        score_act=score_act,
        act_param=None,
        mask_act=target_mask_act,
        detach_length=detach_length)

    # The classifier module
    classifier = target_clf.LinearFilter(
        filter_size=filter_size,
        filter_initializer=initializer,
        filter_optimizer=optimizer,
        feature_extractor=clf_feature_extractor)

    # Bounding box regressor
    bb_regressor = bbmodels.AtomIoUNet(input_dim=(4 * 128, 4 * 256),
                                       pred_input_dim=iou_input_dim,
                                       pred_inter_dim=iou_inter_dim)

    cost_volume_layer = cost_volume.CostVolume(cv_kernel_size,
                                               cv_max_displacement,
                                               stride=cv_stride,
                                               abs_coordinate_output=True)

    motion_response_predictor = resp_pred.ResponsePredictor(
        state_dim=state_dim,
        representation_predictor_dims=representation_predictor_dims,
        gru_ksz=gru_ksz,
        conf_measure=conf_measure,
        dimp_thresh=dimp_thresh)

    response_predictor = predictor_wrappers.PredictorWrapper(
        cost_volume_layer, motion_response_predictor)

    net = KYSNet(backbone_feature_extractor=backbone_net,
                 dimp_classifier=classifier,
                 predictor=response_predictor,
                 bb_regressor=bb_regressor,
                 classification_layer=classification_layer,
                 bb_regressor_layer=['layer2', 'layer3'],
                 train_feature_extractor=train_feature_extractor,
                 train_iounet=train_iounet)
    return net