示例#1
0
    def test_list(self):
        """Anonymous layer can handle list inputs"""
        shape, dtype = (3, 4), 'float32'

        exp = ('x[0] + x[1]')
        input_vars = [
            nn.Input(shape=shape, dtype=dtype, name='input1'),
            nn.Input(shape=shape, dtype=dtype, name='input2')
        ]
        input_vals = [
            np.random.rand(3, 4).astype(dtype),
            np.random.rand(3, 4).astype(dtype),
        ]
        output_val = sum(input_vals)
        with nn.variable_scope(self.get_scope()):
            layer = nn.layer.Anonymous(exp)
            output_var = layer(*input_vars)

        session = nn.Session()
        output_val_ = session.run(outputs=output_var,
                                  inputs={
                                      input_vars[0]: input_vals[0],
                                      input_vars[1]: input_vals[1]
                                  })
        np.testing.assert_almost_equal(output_val, output_val_)
示例#2
0
    def test_dict(self):
        """Anonymous layer can handle dict inputs"""
        shape, dtype = (3, 4), 'float32'

        exp = ('x["0"] + x["1"]')
        input_vars = {
            '0': nn.Input(shape=shape, dtype=dtype, name='input1'),
            '1': nn.Input(shape=shape, dtype=dtype, name='input2')
        }
        input_vals = {
            '0': np.random.rand(3, 4).astype(dtype),
            '1': np.random.rand(3, 4).astype(dtype),
        }
        output_val = sum(input_vals.values())
        with nn.variable_scope(self.get_scope()):
            layer = nn.layer.Anonymous(exp)
            output_var = layer(**input_vars)

        session = nn.Session()
        output_val_ = session.run(outputs=output_var,
                                  inputs={
                                      input_vars['0']: input_vals['0'],
                                      input_vars['1']: input_vals['1']
                                  })
        np.testing.assert_almost_equal(output_val, output_val_)
示例#3
0
文件: ops_test.py 项目: mot0/luchador
    def test_clip_variable_by_norm(self):
        """Test clip_by_norm with Variable"""
        shape, clip_norm = (3, 4), np.asarray(15, dtype='float32')
        with nn.variable_scope(self.get_scope()):
            input_ = nn.Input(shape, dtype='float32')
            clip_var = nn.Input(shape=[], dtype='float32')
            output = nn.ops.clip_by_norm(input_, clip_norm=clip_var)

        session = nn.Session()

        in_val = np.random.rand(*shape).astype('float32')
        out_val = session.run(
            outputs=output,
            givens={input_: in_val, clip_var: clip_norm}
        )
        np.testing.assert_almost_equal(out_val, in_val)

        in_val += 10.0
        out_val = session.run(
            outputs=output,
            givens={input_: in_val, clip_var: clip_norm}
        )
        l2_norm = np.sqrt(np.sum(in_val ** 2))
        np.testing.assert_almost_equal(
            out_val, clip_norm * in_val / l2_norm, decimal=3)
示例#4
0
 def test_concatenate_raise_when_incosistent_shape(self):
     """Concatenate raise ValueError when inconsistent shapes"""
     axis, shape1, shape2 = 1, (3, 5), (4, 6)
     with nn.variable_scope(self.get_scope(), reuse=False):
         input1 = nn.Input(shape=shape1, dtype='float32', name='name1')
         input2 = nn.Input(shape=shape2, dtype='float32', name='name2')
         with self.assertRaises(ValueError):
             nn.layer.Concat(axis=axis).build([input1, input2])
示例#5
0
 def test_concat(self):
     """Compnents consisting Concat layer are retrieved"""
     with nn.variable_scope(self.get_scope()):
         layer = nn.fetch_layer('Concat')(axis=1, scope='Concat')
         output = layer([
             nn.Input(shape=(32, 4), name='input_1'),
             nn.Input(shape=(32, 5), name='input_2'),
         ])
         self.assertIs(output, nn.get_tensor('Concat/output'))
示例#6
0
 def test_concat(self):
     """Compnents consisting Concat layer are retrieved"""
     scope = self.get_scope()
     with nn.variable_scope(scope):
         input_ = [
             nn.Input(shape=(32, 4), name='input'),
             nn.Input(shape=(32, 5), name='input'),
         ]
         layer = nn.get_layer('Concat')(axis=1, name='Concat')
         output = layer(input_)
         self.assertIs(output, nn.get_tensor('Concat/output'))
示例#7
0
 def test_sub(self):
     """Compnents consisting Sub layer are retrieved"""
     scope = self.get_scope()
     with nn.variable_scope(scope):
         input_ = [
             nn.Input(shape=(32, 4), name='input'),
             nn.Input(shape=(32, 4), name='input'),
         ]
         layer = nn.get_layer('Sub')(name='Sub')
         output = layer(input_)
         self.assertIs(output, nn.get_tensor('Sub/output'))
示例#8
0
def _compute_cost(cost, target, logit):
    target_tensor = nn.Input(shape=target.shape)
    logit_tensor = nn.Input(shape=logit.shape)

    output_tensor = cost.build(target_tensor, logit_tensor)

    session = nn.Session()
    output_value = session.run(
        outputs=output_tensor,
        inputs={
            logit_tensor: logit,
            target_tensor: target,
        },
    )
    return output_value
示例#9
0
    def test_paramter_reuse_conv2d(self):
        """Conv2D layer is built using existing Variables"""
        shape = (10, 11, 12, 13)
        with nn.variable_scope(self.get_scope()):
            layer1 = nn.layer.Conv2D(filter_width=5,
                                     filter_height=3,
                                     n_filters=4,
                                     strides=1,
                                     padding='VALID')
            layer2 = nn.layer.Conv2D(filter_width=5,
                                     filter_height=3,
                                     n_filters=4,
                                     strides=1,
                                     padding='VALID')

            tensor = nn.Input(shape=shape)
            out1 = layer1(tensor)
            layer2.set_parameter_variables(
                filter=layer1.get_parameter_variable('filter'),
                bias=layer1.get_parameter_variable('bias'))
            out2 = layer2(tensor)

        for key in ['filter', 'bias']:
            var1 = layer1.get_parameter_variable(key)
            var2 = layer2.get_parameter_variable(key)
            self.assertIs(var1, var2)

        session = nn.Session()
        session.initialize()

        input_val = np.random.rand(*shape)
        out1, out2 = session.run(outputs=[out1, out2],
                                 inputs={tensor: input_val})

        np.testing.assert_almost_equal(out1, out2)
示例#10
0
    def test_dynamic_initializer(self):
        """Initializers are correctly selected"""
        n_in, n_nodes, weight_val, bias_val = 4, 5, 13, 7
        with nn.variable_scope(self.get_scope()):
            dense = nn.layer.Dense(n_nodes=5,
                                   initializers={
                                       'weight': {
                                           'typename': 'ConstantInitializer',
                                           'args': {
                                               'value': weight_val,
                                           },
                                       },
                                       'bias': {
                                           'typename': 'ConstantInitializer',
                                           'args': {
                                               'value': bias_val,
                                           }
                                       }
                                   })
            dense(nn.Input(shape=(3, n_in)))

        session = nn.Session()
        session.initialize()

        weight, bias = session.run(outputs=[
            dense.get_parameter_variable('weight'),
            dense.get_parameter_variable('bias'),
        ])

        np.testing.assert_almost_equal(weight,
                                       weight_val * np.ones((n_in, n_nodes)))
        np.testing.assert_almost_equal(bias, bias_val * np.ones((n_nodes, )))
示例#11
0
    def test_original_input(self):
        """Conv2DTranspose layer is built with provided original_input"""
        h, w, c = 7, 5, 3
        strides, padding = 3, 'valid'
        if _FMT == 'NHWC' and _BE == 'tensorflow':
            input_shape = (32, 84, 84, 4)
        else:
            input_shape = (32, 4, 84, 84)

        conv2d = nn.layer.Conv2D(filter_height=h,
                                 filter_width=w,
                                 n_filters=c,
                                 strides=strides,
                                 padding=padding)
        input_var = nn.Input(shape=input_shape, name='original_input')

        with nn.variable_scope(self.get_scope('convolution')):
            conv_output = conv2d(input_var)

        conv2d_t = nn.layer.Conv2DTranspose(filter_height=h,
                                            filter_width=w,
                                            n_filters=c,
                                            strides=strides,
                                            padding=padding)
        conv2d_t.set_parameter_variables(original_input=input_var)

        with nn.variable_scope(self.get_scope('transpose')):
            conv_t_output = conv2d_t(conv_output)

        self._check(input_var, conv_t_output)
        self.assertIsNot(
            conv2d.get_parameter_variable('filter'),
            conv2d_t.get_parameter_variable('filter'),
        )
示例#12
0
    def test_paramter_reuse_dense(self):
        """Dense layer is built using existing Variables"""
        shape = (3, 5)
        with nn.variable_scope(self.get_scope()):
            layer1 = nn.layer.Dense(n_nodes=5)
            layer2 = nn.layer.Dense(n_nodes=5)

            tensor = nn.Input(shape=shape)
            out1 = layer1(tensor)
            layer2.set_parameter_variables(
                weight=layer1.get_parameter_variable('weight'),
                bias=layer1.get_parameter_variable('bias'),
            )
            out2 = layer2(tensor)

        for key in ['weight', 'bias']:
            var1 = layer1.get_parameter_variable(key)
            var2 = layer2.get_parameter_variable(key)
            self.assertIs(var1, var2)

        session = nn.Session()
        session.initialize()

        input_val = np.random.rand(*shape)
        out1, out2 = session.run(outputs=[out1, out2],
                                 inputs={tensor: input_val})

        np.testing.assert_almost_equal(out1, out2)
示例#13
0
    def test_conv2dtranspose(self):
        """Compnents consisting Conv2DTranspose layer are retrieved"""
        scope = self.get_scope()
        with nn.variable_scope(scope) as vs:
            input_ = nn.Input(shape=(32, 4, 8, 8), name='input')
            layer = nn.get_layer('Conv2D')(filter_height=4,
                                           filter_width=4,
                                           n_filters=4,
                                           strides=1,
                                           with_bias=True,
                                           name='Conv2D')
            output = layer(input_)
            layer = nn.get_layer('Conv2DTranspose')(filter_height=4,
                                                    filter_width=4,
                                                    n_filters=4,
                                                    strides=1,
                                                    with_bias=True,
                                                    output_shape=input_.shape,
                                                    name='Conv2DT')
            output = layer(output)
            filters = layer.get_parameter_variable('filter')
            bias = layer.get_parameter_variable('bias')

        with nn.variable_scope(vs, reuse=True):
            self.assertIs(filters, nn.get_variable('Conv2DT/filter'))
            self.assertIs(bias, nn.get_variable('Conv2DT/bias'))
            self.assertIs(output, nn.get_tensor('Conv2DT/output'))
            self.assertIs(input_, nn.get_input('input'))
示例#14
0
    def test_apply_gradient_directory(self):
        """get_grad correctly fetches gradient Tensor from Variable"""
        w_0 = 6
        sgd = nn.optimizer.SGD(learning_rate=1.0)
        with nn.variable_scope(self.get_scope()):
            x = nn.Input(shape=(), name='x')
            w1 = nn.make_variable(
                name='w',
                shape=(),
                initializer=nn.initializer.ConstantInitializer(w_0),
            )
            y1 = w1 * x
            sgd.minimize(y1, w1)
            dy1dw1_1 = nn.get_tensor('{}_grad'.format(w1.name))
            dy1dw1_2 = nn.get_grad(w1)

            self.assertIs(dy1dw1_1, dy1dw1_2)

        with nn.variable_scope('{}/2'.format(self.get_scope())):
            w2 = nn.make_variable(
                name='w',
                shape=(),
                initializer=nn.initializer.ConstantInitializer(w_0),
            )
            y2 = w2 * x
            sgd.minimize(y2, w2)
            dy2dw2_1 = nn.get_tensor('{}_grad'.format(w2.name))
            dy2dw2_2 = nn.get_grad(w2)

            self.assertIs(dy2dw2_1, dy2dw2_2)
示例#15
0
文件: ops_test.py 项目: mot0/luchador
    def test_clip_number_by_norm_with_axes(self):
        """Test clip_by_norm with axis"""
        shape, clip_norm, axis = (3, 4), 15.0, 1
        with nn.variable_scope(self.get_scope()):
            input_ = nn.Input(shape, dtype='float32')
            output = nn.ops.clip_by_norm(
                input_, clip_norm=clip_norm, axes=axis)

        session = nn.Session()

        in_val = np.random.rand(*shape).astype('float32')
        out_val = session.run(
            outputs=output,
            givens={input_: in_val}
        )
        np.testing.assert_almost_equal(out_val, in_val)

        in_val += 10.0
        out_val = session.run(
            outputs=output,
            givens={input_: in_val}
        )
        l2_norm = np.sqrt(np.sum(in_val ** 2, axis=axis, keepdims=True))
        np.testing.assert_almost_equal(
            out_val, clip_norm * in_val / l2_norm, decimal=3)
示例#16
0
def _exe(exp, input_val, scope):
    input_var = nn.Input(shape=input_val.shape, dtype=input_val.dtype)
    with nn.variable_scope(scope):
        layer = nn.layer.Anonymous(exp)
        output_var = layer(input_var)

    session = nn.Session()
    return session.run(outputs=output_var, inputs={input_var: input_val})
示例#17
0
 def _test_sub(self, noise, shape, mean, std, scope):
     with nn.variable_scope(scope):
         in_var = nn.Input(shape=shape, name='original_input')
         out_var_1 = noise - in_var
         out_var_2 = in_var - noise
     in_val = 10 * np.ones(shape=in_var.shape, dtype=in_var.dtype)
     self._validate(in_var, in_val, mean - 10, std, out_var_1)
     self._validate(in_var, in_val, 10 - mean, std, out_var_2)
示例#18
0
 def _test_add(self, noise, shape, mean, std, scope):
     with nn.variable_scope(scope):
         in_var = nn.Input(shape=shape, name='original_input')
         out_var_1 = noise + in_var
         out_var_2 = in_var + noise
     in_val = np.zeros(shape=in_var.shape, dtype=in_var.dtype)
     self._validate(in_var, in_val, mean, std, out_var_1)
     self._validate(in_var, in_val, mean, std, out_var_2)
示例#19
0
文件: ops_test.py 项目: mot0/luchador
    def _test_dot(self, shape0, shape1):
        with nn.variable_scope(self.get_scope()):
            in_var0 = nn.Input(shape=shape0)
            in_var1 = nn.Input(shape=shape1)
            out_var = nn.ops.dot(in_var0, in_var1)

        in_val0 = np.random.random(size=shape0)
        in_val1 = np.random.random(size=shape1)

        session = nn.Session()

        out_val = session.run(
            outputs=out_var,
            inputs={in_var0: in_val0, in_var1: in_val1},
        )
        np_val = np.dot(in_val0, in_val1)
        np.testing.assert_almost_equal(out_val, np_val, decimal=3)
        self._verify_shape(out_val.shape, out_var.shape)
示例#20
0
    def _test_minimum(self, value0, value1):
        with nn.variable_scope(self.get_scope()):
            input0 = nn.Input(shape=value0.shape, dtype=value0.dtype, name='0')
            input1 = nn.Input(shape=value1.shape, dtype=value1.dtype, name='1')
            output0 = nn.minimum(input0, input1)
            output1 = nn.minimum(input1, input0)
        session = nn.Session()

        val0, val1 = session.run(
            outputs=[output0, output1],
            inputs={
                input0: value0,
                input1: value1
            },
        )

        np.testing.assert_almost_equal(val0, np.minimum(value0, value1))
        np.testing.assert_almost_equal(val1, np.minimum(value1, value0))
示例#21
0
    def test_plrelu_parameter(self):
        """Parameter retrieval succeeds when train=True"""
        base_scope, scope, alpha, shape = self.get_scope(), 'foo', 0.1, (3, 4)
        with nn.variable_scope(base_scope):
            in_var = nn.Input(shape=shape)
            layer = nn.layer.LeakyReLU(alpha=alpha, train=True, scope=scope)
            layer(in_var)

        self.assertIs(layer.get_parameter_variable('alpha'),
                      nn.get_variable('{}/{}/alpha'.format(base_scope, scope)))
示例#22
0
    def test_mean(self):
        """Compnents consisting Mean layer are retrieved"""
        scope = self.get_scope()
        with nn.variable_scope(scope):
            input_ = nn.Input(shape=(32, 4, 8, 8), name='input')
            layer = nn.get_layer('Mean')(axis=[1, 2], name='Mean')
            output = layer(input_)

            self.assertIs(output, nn.get_tensor('Mean/output'))
            self.assertIs(input_, nn.get_input('input'))
示例#23
0
    def test_tile(self):
        """Compnents consisting Tile layer are retrieved"""
        scope = self.get_scope()
        with nn.variable_scope(scope):
            input_ = nn.Input(shape=(32, ), name='input')
            layer = nn.get_layer('Tile')(pattern=(1, 2), name='Tile')
            output = layer(input_)

            self.assertIs(output, nn.get_tensor('Tile/output'))
            self.assertIs(input_, nn.get_input('input'))
示例#24
0
    def test_lrelu_parameter(self):
        """Parameter retrieval failes when train=False"""
        base_scope, scope, alpha, shape = self.get_scope(), 'foo', 0.1, (3, 4)
        with nn.variable_scope(base_scope):
            in_var = nn.Input(shape=shape)
            layer = nn.layer.LeakyReLU(alpha=alpha, train=False, scope=scope)
            layer(in_var)

        with self.assertRaises(KeyError):
            layer.get_parameter_variable('alpha')
示例#25
0
    def test_true_div(self):
        """Compnents consisting truediv layer are retrieved"""
        scope = self.get_scope()
        with nn.variable_scope(scope):
            input_ = nn.Input(shape=(32, 4, 8, 8), name='input')
            layer = nn.fetch_layer('TrueDiv')(denom=1.0, scope='TrueDiv')
            output = layer(input_)

            self.assertIs(output, nn.get_tensor('TrueDiv/output'))
            self.assertIs(input_, nn.get_input('input'))
示例#26
0
    def test_fetch_output(self):
        """Output of Anonymous layer is fetched"""
        base_scope, scope = self.get_scope(), 'anon'
        with nn.variable_scope(base_scope):
            layer = nn.layer.Anonymous(exp='x', scope=scope)
            output_var = layer(nn.Input(shape=(3, 4)))
            _tensor = nn.get_tensor('{}/output'.format(scope))
            self.assertIs(output_var, _tensor)

        _tensor = nn.get_tensor('{}/{}/output'.format(base_scope, scope))
        self.assertIs(output_var, _tensor)
示例#27
0
    def test_get_input_from_current_scope(self):
        """get_input retrieve existing input"""
        scope, name = self.get_scope(), 'foo'
        with nn.variable_scope(scope):
            op = nn.Input(shape=[], name=name)
            self.assertIs(op, nn.get_input(name))

        self.assertIs(op, nn.get_input('{}/{}'.format(scope, name)))

        with self.assertRaises(ValueError):
            nn.get_input(name)
示例#28
0
    def _test_layer_io(self, layer_name, input_shape):
        scope = '{}/{}'.format(self.get_scope(), layer_name)
        with nn.variable_scope(scope) as vs:
            input_ = nn.Input(shape=input_shape, name='input')
            layer = nn.fetch_layer(layer_name)(scope=layer_name)
            output = layer(input_)

        with nn.variable_scope(vs, reuse=True):
            output_tensor_name = '{}/output'.format(layer_name)
            self.assertIs(input_, nn.get_input('input'))
            self.assertIs(output, nn.get_tensor(output_tensor_name))
示例#29
0
    def _test_cost(
            self, cost, target, prediction, expected, elementwise, decimal=5):
        with nn.variable_scope(self.get_scope()):
            target_var = nn.Input(shape=target.shape)
            pred_var = nn.Input(shape=prediction.shape)
            out_var = cost(target_var, pred_var)

        session = nn.Session()
        out_val = session.run(
            outputs=out_var,
            inputs={
                target_var: target,
                pred_var: prediction,
            },
        )

        if not elementwise:
            expected = np.sum(np.mean(expected, axis=0))

        np.testing.assert_almost_equal(out_val, expected, decimal=decimal)
        self.assertEqual(out_val.shape, out_var.shape)
示例#30
0
def _convert(layer, shape):
    input_tensor = nn.Input(shape=shape)
    input_value = np.random.randn(*shape) - 100

    session = nn.Session()

    output_tensor = layer(input_tensor)
    output_value = session.run(
        outputs=output_tensor,
        inputs={input_tensor: input_value},
    )
    return output_value, output_tensor