def test_BRKnna_predict_dense(self): data = csr.csr_matrix([[0, 1], [1, 1], [1, 1.1], [0.5, 1]]) train_ids = [['lid0', 'lid1'], ['lid2', 'lid3'], ['lid4', 'lid3'], ['lid4', 'lid5']] mlb = MultiLabelBinarizer() y = mlb.fit_transform(train_ids) knn = BRKNeighborsClassifier(threshold=0.5, n_neighbors=3, mode='a') knn.fit(data, y) pred = knn.predict(csr.csr_matrix([[1.1, 1.1]])).todense() np.testing.assert_array_equal([[0, 0, 0, 1, 1, 0]], pred)
def test_BRKnnb_predict_two_samples(self): data = csr.csr_matrix([[0, 1], [1, 1.1], [1, 1], [0.5, 1]]) train_ids = [['lid0', 'lid1'], ['lid0', 'lid1'], ['lid4', 'lid5'], ['lid4', 'lid5']] mlb = MultiLabelBinarizer(sparse_output=True) y = mlb.fit_transform(train_ids) knn = BRKNeighborsClassifier(mode='b', n_neighbors=3) knn.fit(data, y) pred = knn.predict(csr.csr_matrix([[0, 1], [2, 2]])).todense() np.testing.assert_array_equal([[1, 1, 0, 0], [0, 0, 1, 1]], pred)
def test_BRKnna_no_labels_take_closest(self): data = csr.csr_matrix([[0, 1], [1, 1], [1, 1.1], [0, 1]]) train_ids = [['lid0', 'lid1'], ['lid2', 'lid3'], ['lid2', 'lid3'], ['lid0', 'lid5']] mlb = MultiLabelBinarizer(sparse_output=True) y = mlb.fit_transform(train_ids) knn = BRKNeighborsClassifier(n_neighbors=2, threshold=0.6, mode='a') knn.fit(data, y) pred = knn.predict(csr.csr_matrix([[0, 1]])).todense() print(pred) np.testing.assert_array_equal([[1, 0, 0, 0, 0]], pred)
def test_BRKnnb_auto_optimize_k(self): data = csr.csr_matrix([[0, 1], [1, 1], [0, 1.1], [1.1, 1]]) train_ids = [['lid0', 'lid1'], ['lid0', 'lid1'], ['lid2', 'lid3'], ['lid0', 'lid1']] mlb = MultiLabelBinarizer() y = mlb.fit_transform(train_ids) knn = BRKNeighborsClassifier(mode='b', n_neighbor_candidates=[1, 3], auto_optimize_k=True) # noinspection PyUnusedLocal def fun(s, X, y_): return data[[1, 2, 3]], data[[0]], y[[1, 2, 3]], y[[0]] BRKNeighborsClassifier._get_split = fun knn.fit(data, y) self.assertEquals(3, knn.n_neighbors) pred = knn.predict(csr.csr_matrix([[0.1, 1], [2, 2]])).todense() np.testing.assert_array_equal([[1, 1, 0, 0], [1, 1, 0, 0]], pred)