示例#1
0
def test_luna3d():
    image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
    image_dir = image_dir + '/test_luna/'
    utils.auto_make_dir(image_dir)

    id2zyxd = utils_lung.read_luna_annotations(pathfinder.LUNA_LABELS_PATH)

    luna_data_paths = [
        '/mnt/sda3/data/kaggle-lung/luna_test_patient/1.3.6.1.4.1.14519.5.2.1.6279.6001.877026508860018521147620598474.mhd'
    ]

    candidates = utils.load_pkl(
        '/mnt/sda3/data/kaggle-lung/luna_test_patient/1.3.6.1.4.1.14519.5.2.1.6279.6001.877026508860018521147620598474.pkl'
    )

    candidates = candidates[:4]
    print(candidates)
    print('--------------')
    print(id2zyxd[
        '1.3.6.1.4.1.14519.5.2.1.6279.6001.877026508860018521147620598474'])

    for k, p in enumerate(luna_data_paths):
        id = os.path.basename(p).replace('.mhd', '')
        print(id)
        img, origin, pixel_spacing = utils_lung.read_mhd(p)
        lung_mask = lung_segmentation.segment_HU_scan_ira(img)
        print(np.min(lung_mask), np.max(lung_mask))
        x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(
            data=img,
            pixel_spacing=pixel_spacing,
            p_transform=p_transform,
            luna_annotations=candidates,
            p_transform_augment=None,
            luna_origin=origin,
            lung_mask=lung_mask,
            world_coord_system=False)

        print(np.min(lung_mask_out), np.max(lung_mask_out))

        plot_slice_3d_2(x, lung_mask_out, 0, id)
        plot_slice_3d_2(x, lung_mask_out, 1, id)
        plot_slice_3d_2(x, lung_mask_out, 2, id)

        # for zyxd in annotations_tf:
        #     plot_slice_3d_2(x, lung_mask_out, 0, id, idx=zyxd)
        #     plot_slice_3d_2(x, lung_mask_out, 1, id, idx=zyxd)
        #     plot_slice_3d_2(x, lung_mask_out, 2, id, idx=zyxd)

        for i in range(136, x.shape[1]):
            plot_slice_3d_2(x,
                            lung_mask_out,
                            1,
                            str(id) + str(i),
                            idx=np.array([200, i, 200]))
示例#2
0
def data_prep_function(data, luna_annotations, pixel_spacing, luna_origin,
                       p_transform=p_transform,
                       p_transform_augment=None):
    # make sure the data is processed the same way
    lung_mask = lung_segmentation.segment_HU_scan_ira(data)
    x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=data,
                                                                                   pixel_spacing=pixel_spacing,
                                                                                   p_transform=p_transform,
                                                                                   luna_annotations=luna_annotations,
                                                                                   p_transform_augment=None,
                                                                                   luna_origin=luna_origin,
                                                                                   lung_mask=lung_mask)
    x = data_transforms.pixelnormHU(x)
    y = data_transforms.make_3d_mask_from_annotations(img_shape=x.shape, annotations=annotations_tf, shape='sphere')
    return x, y, lung_mask_out, annotations_tf, tf_matrix
示例#3
0
def data_prep_function(data, luna_annotations, pixel_spacing, luna_origin,
                       p_transform=p_transform,
                       p_transform_augment=None):
    # make sure the data is processed the same way
    lung_mask = lung_segmentation.segment_HU_scan_ira(data)
    x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=data,
                                                                                   pixel_spacing=pixel_spacing,
                                                                                   p_transform=p_transform,
                                                                                   luna_annotations=luna_annotations,
                                                                                   p_transform_augment=None,
                                                                                   luna_origin=luna_origin,
                                                                                   lung_mask=lung_mask)
    x = data_transforms.pixelnormHU(x)
    y = data_transforms.make_3d_mask_from_annotations(img_shape=x.shape, annotations=annotations_tf, shape='sphere')
    return x, y, lung_mask_out, annotations_tf, tf_matrix
示例#4
0
def data_prep_function(data, luna_annotations, pixel_spacing, luna_origin,
                       p_transform=p_transform,
                       p_transform_augment=None):
    # make sure the data is processed the same way
    lung_mask = lung_segmentation.segment_HU_scan_ira(data)

    annotatations_out = []
    for zyxd in luna_annotations:
        zyx = np.array(zyxd[:3])
        voxel_coords = utils_lung.world2voxel(zyx, luna_origin, pixel_spacing)
        zyxd_out = np.rint(np.append(voxel_coords, zyxd[-1]))
        annotatations_out.append(zyxd_out)
    annotatations_out = np.asarray(annotatations_out)

    return lung_mask, lung_mask, lung_mask, annotatations_out, None
def test_luna3d():
    image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
    image_dir = image_dir + '/test_luna/'
    utils.auto_make_dir(image_dir)

    id2zyxd = utils_lung.read_luna_annotations(pathfinder.LUNA_LABELS_PATH)

    luna_data_paths = [
        '/mnt/sda3/data/kaggle-lung/luna_test_patient/1.3.6.1.4.1.14519.5.2.1.6279.6001.877026508860018521147620598474.mhd']

    candidates = utils.load_pkl(
        '/mnt/sda3/data/kaggle-lung/luna_test_patient/1.3.6.1.4.1.14519.5.2.1.6279.6001.877026508860018521147620598474.pkl')

    candidates = candidates[:4]
    print candidates
    print '--------------'
    print id2zyxd['1.3.6.1.4.1.14519.5.2.1.6279.6001.877026508860018521147620598474']

    for k, p in enumerate(luna_data_paths):
        id = os.path.basename(p).replace('.mhd', '')
        print id
        img, origin, pixel_spacing = utils_lung.read_mhd(p)
        lung_mask = lung_segmentation.segment_HU_scan_ira(img)
        print np.min(lung_mask), np.max(lung_mask)
        x, annotations_tf, tf_matrix, lung_mask_out = data_transforms.transform_scan3d(data=img,
                                                                                       pixel_spacing=pixel_spacing,
                                                                                       p_transform=p_transform,
                                                                                       luna_annotations=candidates,
                                                                                       p_transform_augment=None,
                                                                                       luna_origin=origin,
                                                                                       lung_mask=lung_mask,
                                                                                       world_coord_system=False)

        print np.min(lung_mask_out), np.max(lung_mask_out)

        plot_slice_3d_2(x, lung_mask_out, 0, id)
        plot_slice_3d_2(x, lung_mask_out, 1, id)
        plot_slice_3d_2(x, lung_mask_out, 2, id)

        # for zyxd in annotations_tf:
        #     plot_slice_3d_2(x, lung_mask_out, 0, id, idx=zyxd)
        #     plot_slice_3d_2(x, lung_mask_out, 1, id, idx=zyxd)
        #     plot_slice_3d_2(x, lung_mask_out, 2, id, idx=zyxd)

        for i in xrange(136, x.shape[1]):
            plot_slice_3d_2(x, lung_mask_out, 1, str(id) + str(i), idx=np.array([200, i, 200]))
示例#6
0
def test_dsb():
    image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
    image_dir = image_dir + '/test_1/'
    utils.auto_make_dir(image_dir)

    patient_data_paths = utils_lung.get_patient_data_paths(pathfinder.DATA_PATH)
    print(len(patient_data_paths))
    patient_data_paths = [pathfinder.DATA_PATH + '/01de8323fa065a8963533c4a86f2f6c1']

    for k, p in enumerate(patient_data_paths):
        pid = utils_lung.extract_pid_dir(p)
        # sid2data, sid2metadata = utils_lung.get_patient_data(p)
        # sids_sorted = utils_lung.sort_sids_by_position(sid2metadata)
        # sids_sorted_jonas = utils_lung.sort_slices_jonas(sid2metadata)
        # sid2position = utils_lung.slice_location_finder(sid2metadata)
        #
        # jonas_slicethick = []
        # for i in range(len(sids_sorted_jonas) - 1):
        #     s = np.abs(sid2position[sids_sorted_jonas[i + 1]] - sid2position[sids_sorted_jonas[i]])
        #     jonas_slicethick.append(s)
        #
        # img = np.stack([data_transforms.ct2HU(sid2data[sid], sid2metadata[sid]) for sid in sids_sorted])
        # xx = (jonas_slicethick[0],
        #       sid2metadata[sids_sorted[0]]['PixelSpacing'][0],
        #       sid2metadata[sids_sorted[0]]['PixelSpacing'][1])
        # pixel_spacing = np.asarray(xx)

        img, pixel_spacing = utils_lung.read_dicom_scan(p)
        mask = lung_segmentation.segment_HU_scan_ira(img)
        print(pid)
        print(pixel_spacing)
        print('====================================')

        img_out, transform_matrix, mask_out = data_transforms.transform_scan3d(img,
                                                                               pixel_spacing=pixel_spacing,
                                                                               p_transform=config().p_transform,
                                                                               p_transform_augment=None,
                                                                               lung_mask=mask)

        for i in range(100, img_out.shape[0], 5):
            plot_slice_3d_2(img_out, mask_out, 0, str(pid) + str(i), idx=np.array([i, 200, 200]))

        plot_slice_3d_2(img_out, mask_out, 0, pid, idx=np.array(img_out.shape) / 2)
        plot_slice_3d_2(mask_out, img_out, 0, pid, idx=np.array(img_out.shape) / 4)
        plot_slice_3d_2(mask_out, img_out, 0, pid, idx=np.array(img_out.shape) / 8)
def test_dsb():
    image_dir = utils.get_dir_path('analysis', pathfinder.METADATA_PATH)
    image_dir = image_dir + '/test_1/'
    utils.auto_make_dir(image_dir)

    patient_data_paths = utils_lung.get_patient_data_paths(pathfinder.DATA_PATH)
    print len(patient_data_paths)
    patient_data_paths = [pathfinder.DATA_PATH + '/01de8323fa065a8963533c4a86f2f6c1']

    for k, p in enumerate(patient_data_paths):
        pid = utils_lung.extract_pid_dir(p)
        # sid2data, sid2metadata = utils_lung.get_patient_data(p)
        # sids_sorted = utils_lung.sort_sids_by_position(sid2metadata)
        # sids_sorted_jonas = utils_lung.sort_slices_jonas(sid2metadata)
        # sid2position = utils_lung.slice_location_finder(sid2metadata)
        #
        # jonas_slicethick = []
        # for i in xrange(len(sids_sorted_jonas) - 1):
        #     s = np.abs(sid2position[sids_sorted_jonas[i + 1]] - sid2position[sids_sorted_jonas[i]])
        #     jonas_slicethick.append(s)
        #
        # img = np.stack([data_transforms.ct2HU(sid2data[sid], sid2metadata[sid]) for sid in sids_sorted])
        # xx = (jonas_slicethick[0],
        #       sid2metadata[sids_sorted[0]]['PixelSpacing'][0],
        #       sid2metadata[sids_sorted[0]]['PixelSpacing'][1])
        # pixel_spacing = np.asarray(xx)

        img, pixel_spacing = utils_lung.read_dicom_scan(p)
        mask = lung_segmentation.segment_HU_scan_ira(img)
        print pid
        print pixel_spacing
        print '===================================='

        img_out, transform_matrix, mask_out = data_transforms.transform_scan3d(img,
                                                                               pixel_spacing=pixel_spacing,
                                                                               p_transform=config().p_transform,
                                                                               p_transform_augment=None,
                                                                               lung_mask=mask)

        for i in xrange(100, img_out.shape[0], 5):
            plot_slice_3d_2(img_out, mask_out, 0, str(pid) + str(i), idx=np.array([i, 200, 200]))

        plot_slice_3d_2(img_out, mask_out, 0, pid, idx=np.array(img_out.shape) / 2)
        plot_slice_3d_2(mask_out, img_out, 0, pid, idx=np.array(img_out.shape) / 4)
        plot_slice_3d_2(mask_out, img_out, 0, pid, idx=np.array(img_out.shape) / 8)
def data_prep_function(data,
                       luna_annotations,
                       pixel_spacing,
                       luna_origin,
                       p_transform=p_transform,
                       p_transform_augment=None):
    # make sure the data is processed the same way
    lung_mask = lung_segmentation.segment_HU_scan_ira(data)

    annotatations_out = []
    for zyxd in luna_annotations:
        zyx = np.array(zyxd[:3])
        voxel_coords = utils_lung.world2voxel(zyx, luna_origin, pixel_spacing)
        zyxd_out = np.rint(np.append(voxel_coords, zyxd[-1]))
        annotatations_out.append(zyxd_out)
    annotatations_out = np.asarray(annotatations_out)

    return lung_mask, lung_mask, lung_mask, annotatations_out, None