def cam18sl(data, datab = None, Lb = [100], fov = 10.0, inputtype = 'xyz', direction = 'forward', outin = 'Q,aW,bW', parameters = None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM18sl color appearance correlates. Args: :data: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data or color appearance attributes of stimulus :datab: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data of stimulus background :Lb: | [100], optional | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs | (only used in case datab == None and the background is assumed to be an Equal-Energy-White) :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam18sl | -'inverse': cam18sl -> xyz :outin: | 'Q,aW,bW' or str, optional | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral) | other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM18SL_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | * Instead of using the CIE 1964 10° CMFs in some places of the model, | the CIE 2006 10° CMFs are used througout, making it more self_consistent. | This has an effect on the k scaling factors (now different those in CAM15u) | and the illuminant E normalization for use in the chromatic adaptation transform. | (see future erratum to Hermans et al., 2018) | * The paper also used an equation for the amount of white W, which is | based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). | This has been corrected for in the luxpy version of the model, i.e. | _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672. | (see future erratum to Hermans et al., 2018) References: 1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). "Color appearance model for self-luminous stimuli." Journal of the Optical Society of America A, 35(12), 2000–2009. <https://doi.org/10.1364/JOSAA.35.002000>`_ """ if parameters is None: parameters = _CAM18SL_PARAMETERS outin = outin.split(',') #unpack model parameters: cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, k, naka, unique_hue_data = [parameters[x] for x in sorted(parameters.keys())] # precomputations: Mlms2xyz = np.linalg.inv(_CMF['2006_10']['M']) MAab = np.array([cAlms,calms,cblms]) invMAab = np.linalg.inv(MAab) #------------------------------------------------- # setup EEW reference field and default background field (Lr should be equal to Lb): # Get Lb values: if datab is not None: if inputtype != 'xyz': Lb = spd_to_xyz(datab, cieobs = '2006_10', relative = False)[...,1:2] else: Lb = datab[...,1:2] else: if isinstance(Lb,list): Lb = np2dT(Lb) # Setup EEW ref of same luminance as datab: if inputtype == 'xyz': wlr = getwlr(_CAM18SL_WL3) else: if datab is None: wlr = data[0] # use wlr of stimulus data else: wlr = datab[0] # use wlr of background data datar = np.vstack((wlr,np.ones((Lb.shape[0], wlr.shape[0])))) # create eew xyzr = spd_to_xyz(datar, cieobs = '2006_10', relative = False) # get abs. tristimulus values datar[1:] = datar[1:]/xyzr[...,1:2]*Lb # Create datab if None: if (datab is None): if inputtype != 'xyz': datab = datar.copy() else: datab = spd_to_xyz(datar, cieobs = '2006_10', relative = False) datar = datab.copy() # prepare data and datab for loop over backgrounds: # make axis 1 of datab have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis = 1) # add light source axis 1 if inputtype == 'xyz': if datab.shape[0] == 1: #make datab and datar have same lights source dimension (used to store different backgrounds) size as data datab = np.repeat(datab,data.shape[1],axis=0) datar = np.repeat(datar,data.shape[1],axis=0) else: if datab.shape[0] == 2: datab = np.vstack((datab[0],np.repeat(datab[1:], data.shape[1], axis = 0))) if datar.shape[0] == 2: datar = np.vstack((datar[0],np.repeat(datar[1:], data.shape[1], axis = 0))) # Flip light source/ background dim to axis 0: data = np.transpose(data, axes = (1,0,2)) #------------------------------------------------- #initialize camout: dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan*np.ones(dshape) for i in range(data.shape[0]): # get rho, gamma, beta of background and reference white: if (inputtype != 'xyz'): xyzb = spd_to_xyz(np.vstack((datab[0], datab[i+1:i+2,:])), cieobs = '2006_10', relative = False) xyzr = spd_to_xyz(np.vstack((datar[0], datar[i+1:i+2,:])), cieobs = '2006_10', relative = False) else: xyzb = datab[i:i+1,:] xyzr = datar[i:i+1,:] lmsb = np.dot(_CMF['2006_10']['M'],xyzb.T).T # convert to l,m,s rgbb = (lmsb / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta #lmsr = np.dot(_CMF['2006_10']['M'],xyzr.T).T # convert to l,m,s #rgbr = (lmsr / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background rgbr = np.ones(xyzr.shape)*Lb[i] # explicitely equal EEW cone excitations at same luminance values as background if direction == 'forward': # get rho, gamma, beta of stimulus: if (inputtype != 'xyz'): xyz = spd_to_xyz(data[i], cieobs = '2006_10', relative = False) elif (inputtype == 'xyz'): xyz = data[i] lms = np.dot(_CMF['2006_10']['M'],xyz.T).T # convert to l,m,s rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta # apply von-kries cat with D = 1: if (rgbb == 0).any(): Mcat = np.eye(3) else: Mcat = np.diag((rgbr/rgbb)[0]) rgba = np.dot(Mcat,rgb.T).T # apply naka-rushton compression: rgbc = naka_rushton(rgba, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling']) #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A,a,b = asplit(Aab) a = ca*a b = cb*b # calculate colorfullness like signal M: M = cM*((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = cA*(A + cHK[0]*M**cHK[1]) # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q # calculate amount of white, W: W = 1 / (1.0 + cW[0]*(s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q*(fov/10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a,b, htype = 'deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data = unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M*np.cos(h*np.pi/180.0) bM = M*np.sin(h*np.pi/180.0) if 'aS' in outin: aS = s*np.cos(h*np.pi/180.0) bS = s*np.sin(h*np.pi/180.0) if 'aW' in outin: aW = W*np.cos(h*np.pi/180.0) bW = W*np.sin(h*np.pi/180.0) if (outin != ['Q','aW','bW']): camout[i] = eval('ajoin(('+','.join(outin)+'))') else: camout[i] = ajoin((Q,aW,bW)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((1.0 / W) - 1.0)/cW[0])**(1.0/cW[1]) M = s*Q if 'aM' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s*Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((1.0 / WsM) - 1.0)/cW[0])**(1.0/cW[1]) M = s*Q elif 's' in outin: M = WsM*Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q/cA - cHK[0]*M**cHK[1] # calculate hue angle: h = hue_angle(a,b, htype = 'rad') # calculate a,b from M and h: a = (M/cM)*np.cos(h) b = (M/cM)*np.sin(h) a = a/ca b = b/cb # create Aab: Aab = ajoin((A,a,b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to (adapted) rgba : rgba = naka_rushton(rgbc, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling'], direction = 'inverse') # apply inverse von-kries cat with D = 1: rgb = np.dot(np.diag((rgbb/rgbr)[0]),rgba.T).T # convert rgb to lms to xyz: lms = rgb/k*_CMF['2006_10']['K'] xyz = np.dot(Mlms2xyz,lms.T).T camout[i] = xyz if camout.shape[0] == 1: camout = np.squeeze(camout,axis = 0) return camout
def cam15u(data, fov=10.0, inputtype='xyz', direction='forward', outin='Q,aW,bW', parameters=None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM15u color appearance correlates. Args: :data: | ndarray of CIE 2006 10° XYZ tristimulus values or spectral data or color appearance attributes :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam15u | -'inverse': cam15u -> xyz :outin: | 'Q,aW,bW' or str, optional | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral) | other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM15U_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') References: 1. `M. Withouck, K. A. G. Smet, W. R. Ryckaert, and P. Hanselaer, “Experimental driven modelling of the color appearance of unrelated self-luminous stimuli: CAM15u,” Opt. Express, vol. 23, no. 9, pp. 12045–12064, 2015. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-9-12045&origin=search>`_ 2. `M. Withouck, K. A. G. Smet, and P. Hanselaer, (2015), “Brightness prediction of different sized unrelated self-luminous stimuli,” Opt. Express, vol. 23, no. 10, pp. 13455–13466. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-10-13455&origin=search>`_ """ if parameters is None: parameters = _CAM15U_PARAMETERS outin = outin.split(',') #unpack model parameters: Mxyz2rgb, cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cp, k, unique_hue_data = [ parameters[x] for x in sorted(parameters.keys()) ] # precomputations: invMxyz2rgb = np.linalg.inv(Mxyz2rgb) MAab = np.array([cAlms, calms, cblms]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data) if len(data.shape) == 2: data = np.expand_dims(data, axis=0) # avoid looping if not necessary if (data.shape[0] > data.shape[1]): # loop over shortest dim. flipaxis0and1 = True data = np.transpose(data, axes=(1, 0, 2)) else: flipaxis0and1 = False dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan * np.ones(dshape) for i in range(data.shape[0]): if (inputtype != 'xyz') & (direction == 'forward'): xyz = spd_to_xyz(data[i], cieobs='2006_10', relative=False) lms = np.dot(_CMF['2006_10']['M'], xyz.T).T # convert to l,m,s rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta elif (inputtype == 'xyz') & (direction == 'forward'): rgb = np.dot(Mxyz2rgb, data[i].T).T if direction == 'forward': # apply cube-root compression: rgbc = rgb**(cp) # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A, a, b = asplit(Aab) A = cA * A a = ca * a b = cb * b # calculate colorfullness like signal M: M = cM * ((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = A + cHK[0] * M**cHK[ 1] # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q # calculate amount of white, W: W = 100.0 / (1.0 + cW[0] * (s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q * (fov / 10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a, b, htype='deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data=unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M * np.cos(h * np.pi / 180.0) bM = M * np.sin(h * np.pi / 180.0) if 'aS' in outin: aS = s * np.cos(h * np.pi / 180.0) bS = s * np.sin(h * np.pi / 180.0) if 'aW' in outin: aW = W * np.cos(h * np.pi / 180.0) bW = W * np.sin(h * np.pi / 180.0) if (outin != ['Q', 'aW', 'bW']): camout[i] = eval('ajoin((' + ','.join(outin) + '))') else: camout[i] = ajoin((Q, aW, bW)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((100 / W) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q if 'aM' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s * Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((100.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q elif 's' in outin: M = WsM * Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q - cHK[0] * M**cHK[1] A = A / cA # calculate hue angle: h = hue_angle(a, b, htype='rad') # calculate a,b from M and h: a = (M / cM) * np.cos(h) b = (M / cM) * np.sin(h) a = a / ca b = b / cb # create Aab: Aab = ajoin((A, a, b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to rgb: rgb = rgbc**(1 / cp) # convert rgb to xyz: xyz = np.dot(invMxyz2rgb, rgb.T).T camout[i] = xyz if flipaxis0and1 == True: # loop over shortest dim. camout = np.transpose(camout, axes=(1, 0, 2)) if camout.shape[0] == 1: camout = np.squeeze(camout, axis=0) return camout