示例#1
0
文件: basics.py 项目: hohlraum/luxpy
def positive_arctan(x,y, htype = 'deg'):
    """
    Calculate positive angle (0°-360° or 0 - 2*pi rad.) from x and y.
    
    Args:
        :x: 
            | ndarray of x-coordinates
        :y: 
            | ndarray of y-coordinates
        :htype:
            | 'deg' or 'rad', optional
            |   - 'deg': hue angle between 0° and 360°
            |   - 'rad': hue angle between 0 and 2pi radians
    
    Returns:
        :returns:
            | ndarray of positive angles.
    """
    if htype == 'deg':
        r2d = 180.0/np.pi
        h360 = 360.0
    else:
        r2d = 1.0
        h360 = 2.0*np.pi
    h = np.atleast_1d((np.arctan2(y,x)*r2d))
    h[np.where(h<0)] = h[np.where(h<0)] + h360
    return h
示例#2
0
def positive_arctan(x, y, htype='deg'):

    if htype == 'deg':
        r2d = 180.0 / np.pi
        h360 = 360.0
    else:
        r2d = 1.0
        h360 = 2.0 * np.pi
    h = np.atleast_1d((np.arctan2(y, x) * r2d))
    h[np.where(h < 0)] = h[np.where(h < 0)] + h360
    return h
示例#3
0
 def __init__(self, *args, argtype='xyz', vtype='xyz', _TINY=1e-15):
     self._TINY = _TINY
     self.vtype = vtype
     if len(args) == 0:
         args = [0.0, 0.0, 0.0]
     args = [np.atleast_1d(args[i])
             for i in range(len(args))]  # make atleast_1d ndarray
     if vtype == 'xyz':
         self.x = args[0]
         self.y = args[1]
         self.z = args[2]
     elif vtype == 'tpr':
         if len(args) == 2:
             args.append(np.ones(args[0].shape))
         self.set_tpr(*args)
     self.shape = self.x.shape
示例#4
0
def xyz_to_cct_ohno(xyzw,
                    cieobs=_CIEOBS,
                    out='cct',
                    wl=None,
                    accuracy=0.1,
                    force_out_of_lut=True,
                    upper_cct_max=10.0**20,
                    approx_cct_temp=True):
    """
    Convert XYZ tristimulus values to correlated color temperature (CCT) and 
    Duv (distance above (>0) or below (<0) the Planckian locus) 
    using Ohno's method. 
    
    Args:
        :xyzw: 
            | ndarray of tristimulus values
        :cieobs: 
            | luxpy._CIEOBS, optional
            | CMF set used to calculated xyzw.
        :out: 
            | 'cct' (or 1), optional
            | Determines what to return.
            | Other options: 'duv' (or -1), 'cct,duv'(or 2), "[cct,duv]" (or -2)
        :wl: 
            | None, optional
            | Wavelengths used when calculating Planckian radiators.
        :accuracy: 
            | float, optional
            | Stop brute-force search when cct :accuracy: is reached.
        :upper_cct_max: 
            | 10.0**20, optional
            | Limit brute-force search to this cct.
        :approx_cct_temp: 
            | True, optional
            | If True: use xyz_to_cct_HA() to get a first estimate of cct 
              to speed up search.
        :force_out_of_lut: 
            | True, optional
            | If True and cct is out of range of the LUT, then switch to 
              brute-force search method, else return numpy.nan values.
        
    Returns:
        :returns: 
            | ndarray with:
            |    cct: out == 'cct' (or 1)
            |    duv: out == 'duv' (or -1)
            |    cct, duv: out == 'cct,duv' (or 2)
            |    [cct,duv]: out == "[cct,duv]" (or -2) 
            
    Note:
        LUTs are stored in ./data/cctluts/
        
    Reference:
        1. `Ohno Y. Practical use and calculation of CCT and Duv. 
        Leukos. 2014 Jan 2;10(1):47-55.
        <http://www.tandfonline.com/doi/abs/10.1080/15502724.2014.839020>`_
    """

    xyzw = np2d(xyzw)

    if len(xyzw.shape) > 2:
        raise Exception('xyz_to_cct_ohno(): Input xyzwa.ndim must be <= 2 !')

    # get 1960 u,v of test source:
    Yuv = xyz_to_Yuv(
        xyzw)  # remove possible 1-dim + convert xyzw to CIE 1976 u',v'
    axis_of_v3 = len(Yuv.shape) - 1  # axis containing color components
    u = Yuv[:, 1, None]  # get CIE 1960 u
    v = (2.0 / 3.0) * Yuv[:, 2, None]  # get CIE 1960 v

    uv = np2d(np.concatenate((u, v), axis=axis_of_v3))

    # load cct & uv from LUT:
    if cieobs not in _CCT_LUT:
        _CCT_LUT[cieobs] = calculate_lut(ccts=None,
                                         cieobs=cieobs,
                                         add_to_lut=False)
    cct_LUT = _CCT_LUT[cieobs][:, 0, None]
    uv_LUT = _CCT_LUT[cieobs][:, 1:3]

    # calculate CCT of each uv:
    CCT = np.ones(uv.shape[0]) * np.nan  # initialize with NaN's
    Duv = CCT.copy()  # initialize with NaN's
    idx_m = 0
    idx_M = uv_LUT.shape[0] - 1
    for i in range(uv.shape[0]):
        out_of_lut = False
        delta_uv = (((uv_LUT - uv[i])**2.0).sum(
            axis=1))**0.5  # calculate distance of uv with uv_LUT
        idx_min = delta_uv.argmin()  # find index of minimum distance

        # find Tm, delta_uv and u,v for 2 points surrounding uv corresponding to idx_min:
        if idx_min == idx_m:
            idx_min_m1 = idx_min
            out_of_lut = True
        else:
            idx_min_m1 = idx_min - 1
        if idx_min == idx_M:
            idx_min_p1 = idx_min
            out_of_lut = True
        else:
            idx_min_p1 = idx_min + 1

        if (out_of_lut == True) & (force_out_of_lut
                                   == True):  # calculate using search-function
            cct_i, Duv_i = xyz_to_cct_search(xyzw[i],
                                             cieobs=cieobs,
                                             wl=wl,
                                             accuracy=accuracy,
                                             out='cct,duv',
                                             upper_cct_max=upper_cct_max,
                                             approx_cct_temp=approx_cct_temp)
            CCT[i] = cct_i
            Duv[i] = Duv_i
            continue
        elif (out_of_lut == True) & (force_out_of_lut == False):
            CCT[i] = np.nan
            Duv[i] = np.nan

        cct_m1 = cct_LUT[idx_min_m1]  # - 2*_EPS
        delta_uv_m1 = delta_uv[idx_min_m1]
        uv_m1 = uv_LUT[idx_min_m1]
        cct_p1 = cct_LUT[idx_min_p1]
        delta_uv_p1 = delta_uv[idx_min_p1]
        uv_p1 = uv_LUT[idx_min_p1]

        cct_0 = cct_LUT[idx_min]
        delta_uv_0 = delta_uv[idx_min]

        # calculate uv distance between Tm_m1 & Tm_p1:
        delta_uv_p1m1 = ((uv_p1[0] - uv_m1[0])**2.0 +
                         (uv_p1[1] - uv_m1[1])**2.0)**0.5

        # Triangular solution:
        x = ((delta_uv_m1**2) - (delta_uv_p1**2) +
             (delta_uv_p1m1**2)) / (2 * delta_uv_p1m1)
        Tx = cct_m1 + ((cct_p1 - cct_m1) * (x / delta_uv_p1m1))
        #uBB = uv_m1[0] + (uv_p1[0] - uv_m1[0]) * (x / delta_uv_p1m1)
        vBB = uv_m1[1] + (uv_p1[1] - uv_m1[1]) * (x / delta_uv_p1m1)

        Tx_corrected_triangular = Tx * 0.99991
        signDuv = np.sign(uv[i][1] - vBB)
        Duv_triangular = signDuv * np.atleast_1d(
            ((delta_uv_m1**2.0) - (x**2.0))**0.5)

        # Parabolic solution:
        a = delta_uv_m1 / (cct_m1 - cct_0 + _EPS) / (cct_m1 - cct_p1 + _EPS)
        b = delta_uv_0 / (cct_0 - cct_m1 + _EPS) / (cct_0 - cct_p1 + _EPS)
        c = delta_uv_p1 / (cct_p1 - cct_0 + _EPS) / (cct_p1 - cct_m1 + _EPS)
        A = a + b + c
        B = -(a * (cct_p1 + cct_0) + b * (cct_p1 + cct_m1) + c *
              (cct_0 + cct_m1))
        C = (a * cct_p1 * cct_0) + (b * cct_p1 * cct_m1) + (c * cct_0 * cct_m1)
        Tx = -B / (2 * A + _EPS)
        Tx_corrected_parabolic = Tx * 0.99991
        Duv_parabolic = signDuv * (A * np.power(Tx_corrected_parabolic, 2) +
                                   B * Tx_corrected_parabolic + C)

        Threshold = 0.002
        if Duv_triangular < Threshold:
            CCT[i] = Tx_corrected_triangular
            Duv[i] = Duv_triangular
        else:
            CCT[i] = Tx_corrected_parabolic
            Duv[i] = Duv_parabolic

    # Regulate output:
    if (out == 'cct') | (out == 1):
        return np2dT(CCT)
    elif (out == 'duv') | (out == -1):
        return np2dT(Duv)
    elif (out == 'cct,duv') | (out == 2):
        return np2dT(CCT), np2dT(Duv)
    elif (out == "[cct,duv]") | (out == -2):
        return np.vstack((CCT, Duv)).T
示例#5
0
def hue_quadrature(h, unique_hue_data=None):
    """
    Get hue quadrature H from hue h.
    
    Args:
        :h: 
            | float or ndarray [(N,) or (N,1)] with hue data in degrees (!).
        :unique_hue data:
            | None or dict, optional
            |   - None: defaults to:
            |         {'hues': 'red yellow green blue red'.split(), 
            |        'i': np.arange(5.0), 
            |        'hi':[20.14, 90.0, 164.25,237.53,380.14],
            |        'ei':[0.8,0.7,1.0,1.2,0.8],
            |        'Hi':[0.0,100.0,200.0,300.0,400.0]}
            |   - dict: user specified unique hue data  
            |           (same structure as above)
    
    Returns:
        :H: 
            | ndarray of Hue quadrature value(s).
    """
    if unique_hue_data is None:
        unique_hue_data = {
            'hues': 'red yellow green blue red'.split(),
            'i': np.arange(5.0),
            'hi': [20.14, 90.0, 164.25, 237.53, 380.14],
            'ei': [0.8, 0.7, 1.0, 1.2, 0.8],
            'Hi': [0.0, 100.0, 200.0, 300.0, 400.0]
        }

    changed_number_to_array = False
    if isinstance(h, float) | isinstance(h, int):
        h = np.atleast_1d(h)
        changed_number_to_array = True

    squeezed = False
    if h.ndim > 1:
        if (h.shape[0] == 1):
            h = np.squeeze(h, axis=0)
            squeezed = True

    hi = unique_hue_data['hi']
    Hi = unique_hue_data['Hi']
    ei = unique_hue_data['ei']
    h[h < hi[0]] += 360.0
    h_tmp = np.atleast_2d(h)
    if h_tmp.shape[0] == 1:
        h_tmp = h_tmp.T
    h_hi = np.repeat(h_tmp, repeats=len(hi), axis=1)
    hi_h = np.repeat(np.atleast_2d(hi), repeats=h.shape[0], axis=0)
    d = (h_hi - hi_h)
    d[d < 0] = 1000.0
    p = d.argmin(axis=1)
    p[p == (len(hi) - 1)] = 0  # make sure last unique hue data is not selected
    H = np.array([
        Hi[pi] + (100.0 * (h[i] - hi[pi]) / ei[pi]) /
        ((h[i] - hi[pi]) / ei[pi] + (hi[pi + 1] - h[i]) / ei[pi + 1])
        for (i, pi) in enumerate(p)
    ])
    if changed_number_to_array:
        H = H[0]
    if squeezed:
        H = np.expand_dims(H, axis=0)
    return H
示例#6
0
文件: plotters.py 项目: husion/luxpy
def plot_color_data(x,y,z=None, axh=None, show = True, cieobs =_CIEOBS, \
                    cspace = _CSPACE,  formatstr = 'k-', **kwargs):
    """
    Plot color data from x,y [,z].
    
    Args: 
        :x: 
            | float or ndarray with x-coordinate data
        :y: 
            | float or ndarray with y-coordinate data
        :z: 
            | None or float or ndarray with Z-coordinate data, optional
            | If None: make 2d plot.
        :axh: 
            | None or axes handle, optional
            | Determines axes to plot data in.
            | None: make new figure.
        :show: 
            | True or False, optional
            | Invoke matplotlib.pyplot.show() right after plotting
        :cieobs: 
            | luxpy._CIEOBS or str, optional
            | Determines CMF set to calculate spectrum locus or other.
        :cspace:
            | luxpy._CSPACE or str, optional
            | Determines color space / chromaticity diagram to plot data in.
            | Note that data is expected to be in specified :cspace:
        :formatstr: 
            | 'k-' or str, optional
            | Format str for plotting (see ?matplotlib.pyplot.plot)
        :kwargs:
            | additional keyword arguments for use with matplotlib.pyplot.
    
    Returns:
        :returns: 
            | None (:show: == True) 
            |  or 
            | handle to current axes (:show: == False)
    """
    x = np.atleast_1d(x)
    y = np.atleast_1d(y)
    if 'grid' in kwargs.keys():
        plt.grid(kwargs['grid']);kwargs.pop('grid')
    if z is not None:
        z = np.atleast_1d(z)
        if axh is None:
            fig = plt.figure()
            axh = plt.axes(projection='3d')
        axh.plot3D(x,y,z,formatstr, linewidth = 2,**kwargs)
        plt.zlabel(_CSPACE_AXES[cspace][0], kwargs)
    else:
        plt.plot(x,y,formatstr,linewidth = 2,**kwargs)
        
    plt.xlabel(_CSPACE_AXES[cspace][1], kwargs)
    plt.ylabel(_CSPACE_AXES[cspace][2], kwargs)
    if 'label' in kwargs.keys():
        plt.legend()
    if show == True:
        plt.show()
    else:
        return plt.gca()