示例#1
0
 def test_edges(self):
     '''Test for large edge effects in resampling'''
     x = np.arange(0.0, 100)
     y = np.sin(x/20)
     xx = np.linspace(1, 99, 23)
     yy = resample_flux(xx, x, y)
     diff = np.abs(yy - np.interp(xx, x, y))
     self.assertLess(np.max(np.abs(diff)), 1e-2)
示例#2
0
 def test_resample(self):
     n = 100
     x = np.arange(n)
     y = np.ones(n)
     # we need in this test to make sure we have the same boundaries of the edges bins
     # to obtain the same flux density on the edges
     # because the resampling routine considers the flux is 0 outside of the input bins
     nout = n//2
     stepout = n/float(nout)
     xout = np.arange(nout)*stepout+stepout/2-0.5
     yout = resample_flux(xout, x, y)
     self.assertTrue(np.all(yout == 1.0))
示例#3
0
    def test_flux_conservation(self):
        n = 100
        x = np.arange(n)
        #y = 1+np.sin(x/20.0)
        y = 0.4*x+10 # only exact for linear relation
        y[n//2+1] += 10
        # xout must have edges including bin half width equal
        # or larger than input to get the same integrated flux
        xout = np.arange(0,n+1,2)
        yout = resample_flux(xout, x, y)

        fluxin = np.sum(y*np.gradient(x))
        fluxout = np.sum(yout*np.gradient(xout))
        self.assertAlmostEqual(fluxin, fluxout)
示例#4
0
 def test_weighted_resample(self):
     n = 100
     x = np.arange(n)
     y = 1+np.sin(x/20.0)
     y[n//2+1] += 10
     ivar = np.ones(n)
     for rebin in (2, 3, 5):
         xout = np.arange(0,n+1,rebin)
         yout, ivout = resample_flux(xout, x, y, ivar)
         self.assertEqual(len(xout), len(yout))
         self.assertEqual(len(xout), len(ivout))
         # we have to compare the variance of ouput bins that
         # are fully contained in input
         self.assertAlmostEqual(ivout[ivout.size//2], ivar[ivar.size//2]*rebin)
         # check sum of weights is conserved
         ivar_in  = np.sum(ivar)
         ivar_out = np.sum(ivout)
         self.assertAlmostEqual(ivar_in,ivar_out)
示例#5
0
    def test_non_uniform_grid(self):
        n = 100
        x = np.arange(n)+1.
        y = np.ones(n)
        # we need in this test to make sure we have the same boundaries of the edges bins
        # to obtain the same flux density on the edges
        # because the resampling routine considers the flux is 0 outside of the input bins
        # we consider here a logarithmic output grid
        nout = n//2
        lstepout = (log(x[-1])-log(x[0]))/float(nout)
        xout = np.exp(np.arange(nout)*lstepout)-0.5
        xout[0]  = x[0]-0.5+(xout[1]-xout[0])/2 # same edge of first bin
        offset   =  x[-1]+0.5-(xout[-1]-xout[-2])/2 - xout[-1]
        xout[-2:] += offset # same edge of last bin

        yout = resample_flux(xout, x, y)
        zero = np.max(np.abs(yout-1))
        self.assertAlmostEqual(zero,0.)
示例#6
0
def _resample_flux(args):
    return resample_flux(*args)
示例#7
0
def desi_qso_templates(z_wind=0.2, zmnx=(0.4,4.), outfil=None, N_perz=500,
                       boss_pca_fil=None, wvmnx=(3500., 10000.),
                       rebin_wave=None, rstate=None,
                       sdss_pca_fil=None, no_write=False, redshift=None,
                       seed=None, old_read=False, ipad=40, cosmo=None):
    """ Generate QSO templates for DESI

    Rebins to input wavelength array (or log10 in wvmnx)

    Parameters
    ----------
    z_wind : float, optional
      Window for sampling PCAs
    zmnx : tuple, optional
      Min/max for generation
    N_perz : int, optional
      Number of draws per redshift window
    old_read : bool, optional
      Read the files the old way
    seed : int, optional
      Seed for the random number state
    rebin_wave : ndarray, optional
      Input wavelengths for rebinning
    wvmnx : tuple, optional
      Wavelength limits for rebinning (not used with rebin_wave)
    redshift : ndarray, optional
      Redshifts desired for the templates
    ipad : int, optional
      Padding for enabling enough models
    cosmo: astropy.cosmology.core, optional
       Cosmology inistantiation from astropy.cosmology.code
    Returns
    -------
    wave : ndarray
      Wavelengths that the spectra were rebinned to
    flux : ndarray (2D; flux vs. model)
    z : ndarray
      Redshifts
    """


    # Cosmology
    if cosmo is None:
        from astropy import cosmology
        cosmo = cosmology.core.FlatLambdaCDM(70., 0.3)

    if old_read:
        # PCA values
        if boss_pca_fil is None:
            boss_pca_fil = 'BOSS_DR10Lya_PCA_values_nocut.fits.gz'
        hdu = fits.open(boss_pca_fil)
        boss_pca_coeff = hdu[1].data

        if sdss_pca_fil is None:
            sdss_pca_fil = 'SDSS_DR7Lya_PCA_values_nocut.fits.gz'
        hdu2 = fits.open(sdss_pca_fil)
        sdss_pca_coeff = hdu2[1].data

        # Open the BOSS catalog file
        boss_cat_fil = os.environ.get('BOSSPATH')+'/DR10/BOSSLyaDR10_cat_v2.1.fits.gz'
        bcat_hdu = fits.open(boss_cat_fil)
        t_boss = bcat_hdu[1].data
        boss_zQSO = t_boss['z_pipe']

        # Open the SDSS catalog file
        sdss_cat_fil = os.environ.get('SDSSPATH')+'/DR7_QSO/dr7_qso.fits.gz'
        scat_hdu = fits.open(sdss_cat_fil)
        t_sdss = scat_hdu[1].data
        sdss_zQSO = t_sdss['z']
        if len(sdss_pca_coeff) != len(sdss_zQSO):
            print('Need to finish running the SDSS models!')
            sdss_zQSO = sdss_zQSO[0:len(sdss_pca_coeff)]
        # Eigenvectors
        eigen, eigen_wave = fbq.read_qso_eigen()
    else:
        infile = lvmsim.io.find_basis_template('qso')
        with fits.open(infile) as hdus:
            hdu_names = [hdus[ii].name for ii in range(len(hdus))]
            boss_pca_coeff = hdus[hdu_names.index('BOSS_PCA')].data
            sdss_pca_coeff = hdus[hdu_names.index('SDSS_PCA')].data
            boss_zQSO = hdus[hdu_names.index('BOSS_Z')].data
            sdss_zQSO = hdus[hdu_names.index('SDSS_Z')].data
            eigen = hdus[hdu_names.index('SDSS_EIGEN')].data
            eigen_wave = hdus[hdu_names.index('SDSS_EIGEN_WAVE')].data

    # Fiddle with the eigen-vectors
    npix = len(eigen_wave)
    chkpix = np.where((eigen_wave > 900.) & (eigen_wave < 5000.) )[0]
    lambda_912 = 911.76
    pix912 = np.argmin( np.abs(eigen_wave-lambda_912) )

    # Loop on redshift.  If the
    if redshift is None:
        z0 = np.arange(zmnx[0],zmnx[1],z_wind)
        z1 = z0 + z_wind
    else:
        if np.isscalar(redshift):
            z0 = np.array([redshift])
        else:
            z0 = redshift.copy()
        z1 = z0.copy() #+ z_wind


    pca_list = ['PCA0', 'PCA1', 'PCA2', 'PCA3']
    PCA_mean = np.zeros(4)
    PCA_sig = np.zeros(4)
    PCA_rand = np.zeros((4,N_perz*ipad))

    final_spec = np.zeros((npix, N_perz * len(z0)))
    final_wave = np.zeros((npix, N_perz * len(z0)))
    final_z = np.zeros(N_perz * len(z0))

    # Random state
    if rstate is None:
        rstate = np.random.RandomState(seed)

    for ii in range(len(z0)):

        # BOSS or SDSS?
        if z0[ii] > 2.15:
            zQSO = boss_zQSO
            pca_coeff = boss_pca_coeff
        else:
            zQSO = sdss_zQSO
            pca_coeff = sdss_pca_coeff

        # Random z values and wavelengths
        zrand = rstate.uniform( z0[ii], z1[ii], N_perz*ipad)
        wave = np.outer(eigen_wave, 1+zrand)

        # MFP (Worseck+14)
        mfp = 37. * ( (1+zrand)/5. )**(-5.4) # Physical Mpc

        # Grab PCA mean + sigma
        if redshift is None:
            idx = np.where( (zQSO >= z0[ii]) & (zQSO < z1[ii]) )[0]
        else:
            # Hack by @moustakas: add a little jitter to get the set of QSOs
            # that are *nearest* in redshift to the desired output redshift.
            idx = np.where( (zQSO >= z0[ii]-0.01) & (zQSO < z1[ii]+0.01) )[0]
            if len(idx) == 0:
                idx = np.array([(np.abs(zQSO-zrand[0])).argmin()])
                #pdb.set_trace()
        log.debug('Making z=({:g},{:g}) with {:d} input quasars'.format(z0[ii],z1[ii],len(idx)))

        # Get PCA stats and random values
        for jj,ipca in enumerate(pca_list):
            if jj == 0:  # Use bounds for PCA0 [avoids negative values]
                xmnx = perc(pca_coeff[ipca][idx], per=95)
                PCA_rand[jj, :] = rstate.uniform(xmnx[0], xmnx[1], N_perz*ipad)
            else:
                PCA_mean[jj] = np.mean(pca_coeff[ipca][idx])
                PCA_sig[jj] = np.std(pca_coeff[ipca][idx])
                # Draws
                PCA_rand[jj, :] = rstate.uniform( PCA_mean[jj] - 2*PCA_sig[jj],
                                        PCA_mean[jj] + 2*PCA_sig[jj], N_perz*ipad)

        # Generate the templates (ipad*N_perz)
        spec = np.dot(eigen.T, PCA_rand)

        # Take first good N_perz

        # Truncate, MFP, Fill
        ngd = 0
        nbad = 0
        for kk in range(ipad*N_perz):
            # Any zero values?
            mn = np.min(spec[chkpix, kk])
            if mn < 0.:
                nbad += 1
                continue

            # MFP
            if z0[ii] > 2.39:
                z912 = wave[0:pix912,kk]/lambda_912 - 1.
                phys_dist = np.fabs( cosmo.lookback_distance(z912) -
                                cosmo.lookback_distance(zrand[kk]) ) # Mpc
                spec[0:pix912, kk] = spec[0:pix912,kk] * np.exp(-phys_dist.value/mfp[kk])

            # Write
            final_spec[:, ii*N_perz+ngd] = spec[:,kk]
            final_wave[:, ii*N_perz+ngd] = wave[:,kk]
            final_z[ii*N_perz+ngd] = zrand[kk]
            ngd += 1
            if ngd == N_perz:
                break
        if ngd != N_perz:
            print('Did not make enough!')
            #pdb.set_trace()
            log.warning('Did not make enough qso templates. ngd = {}, N_perz = {}'.format(ngd,N_perz))

    # Rebin
    if rebin_wave is None:
        light = 2.99792458e5        # [km/s]
        velpixsize = 10.            # [km/s]
        pixsize = velpixsize/light/np.log(10) # [pixel size in log-10 A]
        minwave = np.log10(wvmnx[0])          # minimum wavelength [log10-A]
        maxwave = np.log10(wvmnx[1])          # maximum wavelength [log10-A]
        r_npix = np.round((maxwave-minwave)/pixsize+1)

        log_wave = minwave+np.arange(r_npix)*pixsize # constant log-10 spacing
    else:
        log_wave = np.log10(rebin_wave)
        r_npix = len(log_wave)

    totN = N_perz * len(z0)
    rebin_spec = np.zeros((r_npix, totN))


    for ii in range(totN):
        # Interpolate (in log space)
        rebin_spec[:, ii] = resample_flux(log_wave, np.log10(final_wave[:, ii]), final_spec[:, ii])
        #f1d = interp1d(np.log10(final_wave[:,ii]), final_spec[:,ii])
        #rebin_spec[:,ii] = f1d(log_wave)

    if outfil is None:
        return 10.**log_wave, rebin_spec, final_z

    # Transpose for consistency
    out_spec = np.array(rebin_spec.T, dtype='float32')

    # Write
    hdu = fits.PrimaryHDU(out_spec)
    hdu.header.set('PROJECT', 'DESI QSO TEMPLATES')
    hdu.header.set('VERSION', '1.1')
    hdu.header.set('OBJTYPE', 'QSO')
    hdu.header.set('DISPAXIS',  1, 'dispersion axis')
    hdu.header.set('CRPIX1',  1, 'reference pixel number')
    hdu.header.set('CRVAL1',  minwave, 'reference log10(Ang)')
    hdu.header.set('CDELT1',  pixsize, 'delta log10(Ang)')
    hdu.header.set('LOGLAM',  1, 'log10 spaced wavelengths?')
    hdu.header.set('AIRORVAC', 'vac', ' wavelengths in vacuum (vac) or air')
    hdu.header.set('VELSCALE', velpixsize, ' pixel size in km/s')
    hdu.header.set('WAVEUNIT', 'Angstrom', ' wavelength units')
    hdu.header.set('BUNIT', '1e-17 erg/s/cm2/A', ' flux unit')

    idval = list(range(totN))
    col0 = fits.Column(name=str('TEMPLATEID'),format=str('J'), array=idval)
    col1 = fits.Column(name=str('Z'),format=str('E'),array=final_z)
    cols = fits.ColDefs([col0, col1])
    tbhdu = fits.BinTableHDU.from_columns(cols)
    tbhdu.header.set('EXTNAME','METADATA')

    hdulist = fits.HDUList([hdu, tbhdu])
    hdulist.writeto(outfil, clobber=True)

    return final_wave, final_spec, final_z
示例#8
0
def main(args):

    # Set up the logger
    if args.verbose:
        log = get_logger(DEBUG)
    else:
        log = get_logger()

    # Make sure all necessary environment variables are set
    setup_envs()

    # Initialize random number generator to use.
    np.random.seed(args.seed)
    random_state = np.random.RandomState(args.seed)

    # Derive spectrograph number from nstart if needed
    if args.spectrograph is None:
        args.spectrograph = args.nstart / args.n_fibers

    # Read fibermapfile to get object type, night and expid
    fibermap, objtype, night, expid = get_fibermap(args.fibermap,
                                                   log=log,
                                                   nspec=args.nspec)

    # Initialize the spectral simulator
    log.info("Initializing SpecSim with config {}".format(args.config))
    lvmparams = load_lvmparams(config=args.config, telescope=args.telescope)
    qsim = get_simulator(args.config, num_fibers=1, params=lvmparams)

    if args.simspec:
        # Read the input file
        log.info('Reading input file {}'.format(args.simspec))
        simspec = lvmsim.io.read_simspec(args.simspec)
        nspec = simspec.nspec
        if simspec.flavor == 'arc':
            # - TODO: do we need quickgen to support arcs?  For full pipeline
            # - arcs are used to measure PSF but aren't extracted except for
            # - debugging.
            # - TODO: if we do need arcs, this needs to be redone.
            # - conversion from phot to flux doesn't include throughput,
            # - and arc lines are rebinned to nearest 0.2 A.

            # Create full wavelength and flux arrays for arc exposure
            wave_b = np.array(simspec.wave['b'])
            wave_r = np.array(simspec.wave['r'])
            wave_z = np.array(simspec.wave['z'])
            phot_b = np.array(simspec.phot['b'][0])
            phot_r = np.array(simspec.phot['r'][0])
            phot_z = np.array(simspec.phot['z'][0])
            sim_wave = np.concatenate((wave_b, wave_r, wave_z))
            sim_phot = np.concatenate((phot_b, phot_r, phot_z))
            wavelengths = np.arange(3533., 9913.1, 0.2)
            phot = np.zeros(len(wavelengths))
            for i in range(len(sim_wave)):
                wavelength = sim_wave[i]
                flux_index = np.argmin(abs(wavelength - wavelengths))
                phot[flux_index] = sim_phot[i]
            # Convert photons to flux: following specter conversion method
            dw = np.gradient(wavelengths)
            exptime = 5.  # typical BOSS exposure time in s
            fibarea = const.pi * (1.07e-2 /
                                  2)**2  # cross-sectional fiber area in cm^2
            hc = 1.e17 * const.h * const.c  # convert to erg A
            spectra = (hc * exptime * fibarea * dw * phot) / wavelengths
        else:
            wavelengths = simspec.wave['brz']
            spectra = simspec.flux
        if nspec < args.nspec:
            log.info("Only {} spectra in input file".format(nspec))
            args.nspec = nspec

    else:
        # Initialize the output truth table.
        spectra = []
        wavelengths = qsim.source.wavelength_out.to(u.Angstrom).value
        npix = len(wavelengths)
        truth = dict()
        meta = Table()
        truth['OBJTYPE'] = np.zeros(args.nspec, dtype=(str, 10))
        truth['FLUX'] = np.zeros((args.nspec, npix))
        truth['WAVE'] = wavelengths
        jj = list()

        for thisobj in set(true_objtype):
            ii = np.where(true_objtype == thisobj)[0]
            nobj = len(ii)
            truth['OBJTYPE'][ii] = thisobj
            log.info('Generating {} template'.format(thisobj))

            # Generate the templates
            if thisobj == 'ELG':
                elg = lvmsim.templates.ELG(wave=wavelengths,
                                           add_SNeIa=args.add_SNeIa)
                flux, tmpwave, meta1 = elg.make_templates(
                    nmodel=nobj,
                    seed=args.seed,
                    zrange=args.zrange_elg,
                    sne_rfluxratiorange=args.sne_rfluxratiorange)
            elif thisobj == 'LRG':
                lrg = lvmsim.templates.LRG(wave=wavelengths,
                                           add_SNeIa=args.add_SNeIa)
                flux, tmpwave, meta1 = lrg.make_templates(
                    nmodel=nobj,
                    seed=args.seed,
                    zrange=args.zrange_lrg,
                    sne_rfluxratiorange=args.sne_rfluxratiorange)
            elif thisobj == 'QSO':
                qso = lvmsim.templates.QSO(wave=wavelengths)
                flux, tmpwave, meta1 = qso.make_templates(
                    nmodel=nobj, seed=args.seed, zrange=args.zrange_qso)
            elif thisobj == 'BGS':
                bgs = lvmsim.templates.BGS(wave=wavelengths,
                                           add_SNeIa=args.add_SNeIa)
                flux, tmpwave, meta1 = bgs.make_templates(
                    nmodel=nobj,
                    seed=args.seed,
                    zrange=args.zrange_bgs,
                    rmagrange=args.rmagrange_bgs,
                    sne_rfluxratiorange=args.sne_rfluxratiorange)
            elif thisobj == 'STD':
                fstd = lvmsim.templates.FSTD(wave=wavelengths)
                flux, tmpwave, meta1 = fstd.make_templates(nmodel=nobj,
                                                           seed=args.seed)
            elif thisobj == 'QSO_BAD':  # use STAR template no color cuts
                star = lvmsim.templates.STAR(wave=wavelengths)
                flux, tmpwave, meta1 = star.make_templates(nmodel=nobj,
                                                           seed=args.seed)
            elif thisobj == 'MWS_STAR' or thisobj == 'MWS':
                mwsstar = lvmsim.templates.MWS_STAR(wave=wavelengths)
                flux, tmpwave, meta1 = mwsstar.make_templates(nmodel=nobj,
                                                              seed=args.seed)
            elif thisobj == 'WD':
                wd = lvmsim.templates.WD(wave=wavelengths)
                flux, tmpwave, meta1 = wd.make_templates(nmodel=nobj,
                                                         seed=args.seed)
            elif thisobj == 'SKY':
                flux = np.zeros((nobj, npix))
                meta1 = Table(dict(REDSHIFT=np.zeros(nobj, dtype=np.float32)))
            elif thisobj == 'TEST':
                flux = np.zeros((args.nspec, npix))
                indx = np.where(wave > 5800.0 - 1E-6)[0][0]
                ref_integrated_flux = 1E-10
                ref_cst_flux_density = 1E-17
                single_line = (np.arange(args.nspec) % 2 == 0).astype(
                    np.float32)
                continuum = (np.arange(args.nspec) % 2 == 1).astype(np.float32)

                for spec in range(args.nspec):
                    flux[spec, indx] = single_line[
                        spec] * ref_integrated_flux / np.gradient(wavelengths)[
                            indx]  # single line
                    flux[spec] += continuum[
                        spec] * ref_cst_flux_density  # flat continuum

                meta1 = Table(
                    dict(REDSHIFT=np.zeros(args.nspec, dtype=np.float32),
                         LINE=wave[indx] *
                         np.ones(args.nspec, dtype=np.float32),
                         LINEFLUX=single_line * ref_integrated_flux,
                         CONSTFLUXDENSITY=continuum * ref_cst_flux_density))
            else:
                log.fatal('Unknown object type {}'.format(thisobj))
                sys.exit(1)

            # Pack it in.
            truth['FLUX'][ii] = flux
            meta = vstack([meta, meta1])
            jj.append(ii.tolist())

            # Sanity check on units; templates currently return ergs, not 1e-17 ergs...
            # assert (thisobj == 'SKY') or (np.max(truth['FLUX']) < 1e-6)

        # Sort the metadata table.
        jj = sum(jj, [])
        meta_new = Table()
        for k in range(args.nspec):
            index = int(np.where(np.array(jj) == k)[0])
            meta_new = vstack([meta_new, meta[index]])
        meta = meta_new

        # Add TARGETID and the true OBJTYPE to the metadata table.
        meta.add_column(
            Column(true_objtype, dtype=(str, 10), name='TRUE_OBJTYPE'))
        meta.add_column(Column(targetids, name='TARGETID'))

        # Rename REDSHIFT -> TRUEZ anticipating later table joins with zbest.Z
        meta.rename_column('REDSHIFT', 'TRUEZ')

    # ---------- end simspec

    # explicitly set location on focal plane if needed to support airmass
    # variations when using specsim v0.5
    if qsim.source.focal_xy is None:
        qsim.source.focal_xy = (u.Quantity(0, 'mm'), u.Quantity(100, 'mm'))

    # Set simulation parameters from the simspec header or lvmparams
    bright_objects = ['bgs', 'mws', 'bright', 'BGS', 'MWS', 'BRIGHT_MIX']
    gray_objects = ['gray', 'grey']
    if args.simspec is None:
        object_type = objtype
        flavor = None
    elif simspec.flavor == 'science':
        object_type = None
        flavor = simspec.header['PROGRAM']
    else:
        object_type = None
        flavor = simspec.flavor
        log.warning(
            'Maybe using an outdated simspec file with flavor={}'.format(
                flavor))

    # Set airmass
    if args.airmass is not None:
        qsim.atmosphere.airmass = args.airmass
    elif args.simspec and 'AIRMASS' in simspec.header:
        qsim.atmosphere.airmass = simspec.header['AIRMASS']
    else:
        qsim.atmosphere.airmass = 1.25  # Science Req. Doc L3.3.2

    # Set site location
    if args.location is not None:
        qsim.observation.observatory = args.location
    else:
        qsim.observation.observatory = 'APO'

    # Set exptime
    if args.exptime is not None:
        qsim.observation.exposure_time = args.exptime * u.s
    elif args.simspec and 'EXPTIME' in simspec.header:
        qsim.observation.exposure_time = simspec.header['EXPTIME'] * u.s
    elif objtype in bright_objects:
        qsim.observation.exposure_time = lvmparams['exptime_bright'] * u.s
    else:
        qsim.observation.exposure_time = lvmparams['exptime_dark'] * u.s

    # Set Moon Phase
    if args.moon_phase is not None:
        qsim.atmosphere.moon.moon_phase = args.moon_phase
    elif args.simspec and 'MOONFRAC' in simspec.header:
        qsim.atmosphere.moon.moon_phase = simspec.header['MOONFRAC']
    elif flavor in bright_objects or object_type in bright_objects:
        qsim.atmosphere.moon.moon_phase = 0.7
    elif flavor in gray_objects:
        qsim.atmosphere.moon.moon_phase = 0.1
    else:
        qsim.atmosphere.moon.moon_phase = 0.5

    # Set Moon Zenith
    if args.moon_zenith is not None:
        qsim.atmosphere.moon.moon_zenith = args.moon_zenith * u.deg
    elif args.simspec and 'MOONALT' in simspec.header:
        qsim.atmosphere.moon.moon_zenith = simspec.header['MOONALT'] * u.deg
    elif flavor in bright_objects or object_type in bright_objects:
        qsim.atmosphere.moon.moon_zenith = 30 * u.deg
    elif flavor in gray_objects:
        qsim.atmosphere.moon.moon_zenith = 80 * u.deg
    else:
        qsim.atmosphere.moon.moon_zenith = 100 * u.deg

    # Set Moon - Object Angle
    if args.moon_angle is not None:
        qsim.atmosphere.moon.separation_angle = args.moon_angle * u.deg
    elif args.simspec and 'MOONSEP' in simspec.header:
        qsim.atmosphere.moon.separation_angle = simspec.header[
            'MOONSEP'] * u.deg
    elif flavor in bright_objects or object_type in bright_objects:
        qsim.atmosphere.moon.separation_angle = 50 * u.deg
    elif flavor in gray_objects:
        qsim.atmosphere.moon.separation_angle = 60 * u.deg
    else:
        qsim.atmosphere.moon.separation_angle = 60 * u.deg

    # Initialize per-camera output arrays that will be saved
    waves, trueflux, noisyflux, obsivar, resolution, sflux = {}, {}, {}, {}, {}, {}

    maxbin = 0
    nmax = args.nspec
    for camera in qsim.instrument.cameras:
        # Lookup this camera's resolution matrix and convert to the sparse format used in lvmspec.
        R = Resolution(camera.get_output_resolution_matrix())
        resolution[camera.name] = np.tile(R.to_fits_array(),
                                          [args.nspec, 1, 1])
        waves[camera.name] = (camera.output_wavelength.to(
            u.Angstrom).value.astype(np.float32))
        nwave = len(waves[camera.name])
        maxbin = max(maxbin, len(waves[camera.name]))
        nobj = np.zeros((nmax, 3, maxbin))  # object photons
        nsky = np.zeros((nmax, 3, maxbin))  # sky photons
        nivar = np.zeros((nmax, 3, maxbin))  # inverse variance (object+sky)
        cframe_observedflux = np.zeros(
            (nmax, 3, maxbin))  # calibrated object flux
        cframe_ivar = np.zeros(
            (nmax, 3, maxbin))  # inverse variance of calibrated object flux
        cframe_rand_noise = np.zeros(
            (nmax, 3, maxbin))  # random Gaussian noise to calibrated flux
        sky_ivar = np.zeros((nmax, 3, maxbin))  # inverse variance of sky
        sky_rand_noise = np.zeros(
            (nmax, 3, maxbin))  # random Gaussian noise to sky only
        frame_rand_noise = np.zeros(
            (nmax, 3, maxbin))  # random Gaussian noise to nobj+nsky
        trueflux[camera.name] = np.empty(
            (args.nspec, nwave))  # calibrated flux
        noisyflux[camera.name] = np.empty(
            (args.nspec, nwave))  # observed flux with noise
        obsivar[camera.name] = np.empty(
            (args.nspec, nwave))  # inverse variance of flux
        if args.simspec:
            dw = np.gradient(simspec.wave[camera.name])
        else:
            sflux = np.empty((args.nspec, npix))

    # - Check if input simspec is for a continuum flat lamp instead of science
    # - This does not convolve to per-fiber resolution
    if args.simspec:
        if simspec.flavor == 'flat':
            log.info("Simulating flat lamp exposure")
            for i, camera in enumerate(qsim.instrument.cameras):
                channel = camera.name
                assert camera.output_wavelength.unit == u.Angstrom
                num_pixels = len(waves[channel])
                dw = np.gradient(simspec.wave[channel])
                meanspec = resample_flux(
                    waves[channel], simspec.wave[channel],
                    np.average(simspec.phot[channel] / dw, axis=0))
                fiberflat = random_state.normal(loc=1.0,
                                                scale=1.0 / np.sqrt(meanspec),
                                                size=(nspec, num_pixels))
                ivar = np.tile(meanspec, [nspec, 1])
                mask = np.zeros((simspec.nspec, num_pixels), dtype=np.uint32)

                for kk in range((args.nspec + args.nstart - 1) //
                                args.n_fibers + 1):
                    camera = channel + str(kk)
                    outfile = lvmspec.io.findfile('fiberflat', night, expid,
                                                  camera)
                    start = max(args.n_fibers * kk, args.nstart)
                    end = min(args.n_fibers * (kk + 1), nmax)

                    if (args.spectrograph <= kk):
                        log.info(
                            "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}"
                            .format(channel, kk, start, end))

                    ff = FiberFlat(waves[channel],
                                   fiberflat[start:end, :],
                                   ivar[start:end, :],
                                   mask[start:end, :],
                                   meanspec,
                                   header=dict(CAMERA=camera))
                    write_fiberflat(outfile, ff)
                    filePath = lvmspec.io.findfile("fiberflat", night, expid,
                                                   camera)
                    log.info("Wrote file {}".format(filePath))

            sys.exit(0)

    # Repeat the simulation for all spectra
    scale = 1e-17
    fluxunits = scale * u.erg / (u.s * u.cm**2 * u.Angstrom)
    for j in range(args.nspec):

        thisobjtype = objtype[j]
        sys.stdout.flush()
        if flavor == 'arc':
            qsim.source.update_in('Quickgen source {0}'.format, 'perfect',
                                  wavelengths * u.Angstrom,
                                  spectra * fluxunits)
        else:
            qsim.source.update_in('Quickgen source {0}'.format(j),
                                  thisobjtype.lower(),
                                  wavelengths * u.Angstrom,
                                  spectra[j, :] * fluxunits)
        qsim.source.update_out()

        qsim.simulate()
        qsim.generate_random_noise(random_state)

        for i, output in enumerate(qsim.camera_output):
            assert output['observed_flux'].unit == 1e17 * fluxunits
            # Extract the simulation results needed to create our uncalibrated
            # frame output file.
            num_pixels = len(output)
            nobj[j, i, :num_pixels] = output['num_source_electrons'][:, 0]
            nsky[j, i, :num_pixels] = output['num_sky_electrons'][:, 0]
            nivar[j, i, :num_pixels] = 1.0 / output['variance_electrons'][:, 0]

            # Get results for our flux-calibrated output file.
            cframe_observedflux[
                j, i, :num_pixels] = 1e17 * output['observed_flux'][:, 0]
            cframe_ivar[
                j,
                i, :num_pixels] = 1e-34 * output['flux_inverse_variance'][:, 0]

            # Fill brick arrays from the results.
            camera = output.meta['name']
            trueflux[camera][j][:] = 1e17 * output['observed_flux'][:, 0]
            noisyflux[camera][j][:] = 1e17 * (
                output['observed_flux'][:, 0] +
                output['flux_calibration'][:, 0] *
                output['random_noise_electrons'][:, 0])
            obsivar[camera][j][:] = 1e-34 * output['flux_inverse_variance'][:,
                                                                            0]

            # Use the same noise realization in the cframe and frame, without any
            # additional noise from sky subtraction for now.
            frame_rand_noise[
                j, i, :num_pixels] = output['random_noise_electrons'][:, 0]
            cframe_rand_noise[j, i, :num_pixels] = 1e17 * (
                output['flux_calibration'][:, 0] *
                output['random_noise_electrons'][:, 0])

            # The sky output file represents a model fit to ~40 sky fibers.
            # We reduce the variance by a factor of 25 to account for this and
            # give the sky an independent (Gaussian) noise realization.
            sky_ivar[
                j,
                i, :num_pixels] = 25.0 / (output['variance_electrons'][:, 0] -
                                          output['num_source_electrons'][:, 0])
            sky_rand_noise[j, i, :num_pixels] = random_state.normal(
                scale=1.0 / np.sqrt(sky_ivar[j, i, :num_pixels]),
                size=num_pixels)

    armName = {"b": 0, "r": 1, "z": 2}
    for channel in 'brz':

        # Before writing, convert from counts/bin to counts/A (as in Pixsim output)
        # Quicksim Default:
        # FLUX - input spectrum resampled to this binning; no noise added [1e-17 erg/s/cm2/s/Ang]
        # COUNTS_OBJ - object counts in 0.5 Ang bin
        # COUNTS_SKY - sky counts in 0.5 Ang bin

        num_pixels = len(waves[channel])
        dwave = np.gradient(waves[channel])
        nobj[:, armName[channel], :num_pixels] /= dwave
        frame_rand_noise[:, armName[channel], :num_pixels] /= dwave
        nivar[:, armName[channel], :num_pixels] *= dwave**2
        nsky[:, armName[channel], :num_pixels] /= dwave
        sky_rand_noise[:, armName[channel], :num_pixels] /= dwave
        sky_ivar[:, armName[channel], :num_pixels] /= dwave**2

        # Now write the outputs in DESI standard file system. None of the output file can have more than args.n_fibers spectra

        # Looping over spectrograph
        for ii in range((args.nspec + args.nstart - 1) // args.n_fibers + 1):

            start = max(args.n_fibers * ii,
                        args.nstart)  # first spectrum for a given spectrograph
            end = min(args.n_fibers * (ii + 1),
                      nmax)  # last spectrum for the spectrograph

            if (args.spectrograph <= ii):
                camera = "{}{}".format(channel, ii)
                log.info(
                    "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}"
                    .format(channel, ii, start, end))
                num_pixels = len(waves[channel])

                # Write frame file
                framefileName = lvmspec.io.findfile("frame", night, expid,
                                                    camera)

                frame_flux = nobj[start:end, armName[channel], :num_pixels] + \
                    nsky[start:end, armName[channel], :num_pixels] + \
                    frame_rand_noise[start:end, armName[channel], :num_pixels]
                frame_ivar = nivar[start:end, armName[channel], :num_pixels]

                # required for slicing the resolution metric, resolusion matrix has (nspec, ndiag, wave)
                # for example if nstart =400, nspec=150: two spectrographs:
                # 400-499=> 0 spectrograph, 500-549 => 1
                sh1 = frame_flux.shape[0]

                if (args.nstart == start):
                    resol = resolution[channel][:sh1, :, :]
                else:
                    resol = resolution[channel][-sh1:, :, :]

                # must create lvmspec.Frame object
                frame = Frame(waves[channel],
                              frame_flux,
                              frame_ivar,
                              resolution_data=resol,
                              spectrograph=ii,
                              fibermap=fibermap[start:end],
                              meta=dict(CAMERA=camera, FLAVOR=simspec.flavor))
                lvmspec.io.write_frame(framefileName, frame)

                framefilePath = lvmspec.io.findfile("frame", night, expid,
                                                    camera)
                log.info("Wrote file {}".format(framefilePath))

                if args.frameonly or simspec.flavor == 'arc':
                    continue

                # Write cframe file
                cframeFileName = lvmspec.io.findfile("cframe", night, expid,
                                                     camera)
                cframeFlux = cframe_observedflux[start:end, armName[channel], :num_pixels] + \
                    cframe_rand_noise[start:end, armName[channel], :num_pixels]
                cframeIvar = cframe_ivar[start:end,
                                         armName[channel], :num_pixels]

                # must create lvmspec.Frame object
                cframe = Frame(waves[channel],
                               cframeFlux,
                               cframeIvar,
                               resolution_data=resol,
                               spectrograph=ii,
                               fibermap=fibermap[start:end],
                               meta=dict(CAMERA=camera, FLAVOR=simspec.flavor))
                lvmspec.io.frame.write_frame(cframeFileName, cframe)

                cframefilePath = lvmspec.io.findfile("cframe", night, expid,
                                                     camera)
                log.info("Wrote file {}".format(cframefilePath))

                # Write sky file
                skyfileName = lvmspec.io.findfile("sky", night, expid, camera)
                skyflux = nsky[start:end, armName[channel], :num_pixels] + \
                    sky_rand_noise[start:end, armName[channel], :num_pixels]
                skyivar = sky_ivar[start:end, armName[channel], :num_pixels]
                skymask = np.zeros(skyflux.shape, dtype=np.uint32)

                # must create lvmspec.Sky object
                skymodel = SkyModel(waves[channel],
                                    skyflux,
                                    skyivar,
                                    skymask,
                                    header=dict(CAMERA=camera))
                lvmspec.io.sky.write_sky(skyfileName, skymodel)

                skyfilePath = lvmspec.io.findfile("sky", night, expid, camera)
                log.info("Wrote file {}".format(skyfilePath))

                # Write calib file
                calibVectorFile = lvmspec.io.findfile("calib", night, expid,
                                                      camera)
                flux = cframe_observedflux[start:end,
                                           armName[channel], :num_pixels]
                phot = nobj[start:end, armName[channel], :num_pixels]
                calibration = np.zeros_like(phot)
                jj = (flux > 0)
                calibration[jj] = phot[jj] / flux[jj]

                # - TODO: what should calibivar be?
                # - For now, model it as the noise of combining ~10 spectra
                calibivar = 10 / cframe_ivar[start:end,
                                             armName[channel], :num_pixels]
                # mask=(1/calibivar>0).astype(int)??
                mask = np.zeros(calibration.shape, dtype=np.uint32)

                # write flux calibration
                fluxcalib = FluxCalib(waves[channel], calibration, calibivar,
                                      mask)
                write_flux_calibration(calibVectorFile, fluxcalib)

                calibfilePath = lvmspec.io.findfile("calib", night, expid,
                                                    camera)
                log.info("Wrote file {}".format(calibfilePath))