def test_edges(self): '''Test for large edge effects in resampling''' x = np.arange(0.0, 100) y = np.sin(x/20) xx = np.linspace(1, 99, 23) yy = resample_flux(xx, x, y) diff = np.abs(yy - np.interp(xx, x, y)) self.assertLess(np.max(np.abs(diff)), 1e-2)
def test_resample(self): n = 100 x = np.arange(n) y = np.ones(n) # we need in this test to make sure we have the same boundaries of the edges bins # to obtain the same flux density on the edges # because the resampling routine considers the flux is 0 outside of the input bins nout = n//2 stepout = n/float(nout) xout = np.arange(nout)*stepout+stepout/2-0.5 yout = resample_flux(xout, x, y) self.assertTrue(np.all(yout == 1.0))
def test_flux_conservation(self): n = 100 x = np.arange(n) #y = 1+np.sin(x/20.0) y = 0.4*x+10 # only exact for linear relation y[n//2+1] += 10 # xout must have edges including bin half width equal # or larger than input to get the same integrated flux xout = np.arange(0,n+1,2) yout = resample_flux(xout, x, y) fluxin = np.sum(y*np.gradient(x)) fluxout = np.sum(yout*np.gradient(xout)) self.assertAlmostEqual(fluxin, fluxout)
def test_weighted_resample(self): n = 100 x = np.arange(n) y = 1+np.sin(x/20.0) y[n//2+1] += 10 ivar = np.ones(n) for rebin in (2, 3, 5): xout = np.arange(0,n+1,rebin) yout, ivout = resample_flux(xout, x, y, ivar) self.assertEqual(len(xout), len(yout)) self.assertEqual(len(xout), len(ivout)) # we have to compare the variance of ouput bins that # are fully contained in input self.assertAlmostEqual(ivout[ivout.size//2], ivar[ivar.size//2]*rebin) # check sum of weights is conserved ivar_in = np.sum(ivar) ivar_out = np.sum(ivout) self.assertAlmostEqual(ivar_in,ivar_out)
def test_non_uniform_grid(self): n = 100 x = np.arange(n)+1. y = np.ones(n) # we need in this test to make sure we have the same boundaries of the edges bins # to obtain the same flux density on the edges # because the resampling routine considers the flux is 0 outside of the input bins # we consider here a logarithmic output grid nout = n//2 lstepout = (log(x[-1])-log(x[0]))/float(nout) xout = np.exp(np.arange(nout)*lstepout)-0.5 xout[0] = x[0]-0.5+(xout[1]-xout[0])/2 # same edge of first bin offset = x[-1]+0.5-(xout[-1]-xout[-2])/2 - xout[-1] xout[-2:] += offset # same edge of last bin yout = resample_flux(xout, x, y) zero = np.max(np.abs(yout-1)) self.assertAlmostEqual(zero,0.)
def _resample_flux(args): return resample_flux(*args)
def desi_qso_templates(z_wind=0.2, zmnx=(0.4,4.), outfil=None, N_perz=500, boss_pca_fil=None, wvmnx=(3500., 10000.), rebin_wave=None, rstate=None, sdss_pca_fil=None, no_write=False, redshift=None, seed=None, old_read=False, ipad=40, cosmo=None): """ Generate QSO templates for DESI Rebins to input wavelength array (or log10 in wvmnx) Parameters ---------- z_wind : float, optional Window for sampling PCAs zmnx : tuple, optional Min/max for generation N_perz : int, optional Number of draws per redshift window old_read : bool, optional Read the files the old way seed : int, optional Seed for the random number state rebin_wave : ndarray, optional Input wavelengths for rebinning wvmnx : tuple, optional Wavelength limits for rebinning (not used with rebin_wave) redshift : ndarray, optional Redshifts desired for the templates ipad : int, optional Padding for enabling enough models cosmo: astropy.cosmology.core, optional Cosmology inistantiation from astropy.cosmology.code Returns ------- wave : ndarray Wavelengths that the spectra were rebinned to flux : ndarray (2D; flux vs. model) z : ndarray Redshifts """ # Cosmology if cosmo is None: from astropy import cosmology cosmo = cosmology.core.FlatLambdaCDM(70., 0.3) if old_read: # PCA values if boss_pca_fil is None: boss_pca_fil = 'BOSS_DR10Lya_PCA_values_nocut.fits.gz' hdu = fits.open(boss_pca_fil) boss_pca_coeff = hdu[1].data if sdss_pca_fil is None: sdss_pca_fil = 'SDSS_DR7Lya_PCA_values_nocut.fits.gz' hdu2 = fits.open(sdss_pca_fil) sdss_pca_coeff = hdu2[1].data # Open the BOSS catalog file boss_cat_fil = os.environ.get('BOSSPATH')+'/DR10/BOSSLyaDR10_cat_v2.1.fits.gz' bcat_hdu = fits.open(boss_cat_fil) t_boss = bcat_hdu[1].data boss_zQSO = t_boss['z_pipe'] # Open the SDSS catalog file sdss_cat_fil = os.environ.get('SDSSPATH')+'/DR7_QSO/dr7_qso.fits.gz' scat_hdu = fits.open(sdss_cat_fil) t_sdss = scat_hdu[1].data sdss_zQSO = t_sdss['z'] if len(sdss_pca_coeff) != len(sdss_zQSO): print('Need to finish running the SDSS models!') sdss_zQSO = sdss_zQSO[0:len(sdss_pca_coeff)] # Eigenvectors eigen, eigen_wave = fbq.read_qso_eigen() else: infile = lvmsim.io.find_basis_template('qso') with fits.open(infile) as hdus: hdu_names = [hdus[ii].name for ii in range(len(hdus))] boss_pca_coeff = hdus[hdu_names.index('BOSS_PCA')].data sdss_pca_coeff = hdus[hdu_names.index('SDSS_PCA')].data boss_zQSO = hdus[hdu_names.index('BOSS_Z')].data sdss_zQSO = hdus[hdu_names.index('SDSS_Z')].data eigen = hdus[hdu_names.index('SDSS_EIGEN')].data eigen_wave = hdus[hdu_names.index('SDSS_EIGEN_WAVE')].data # Fiddle with the eigen-vectors npix = len(eigen_wave) chkpix = np.where((eigen_wave > 900.) & (eigen_wave < 5000.) )[0] lambda_912 = 911.76 pix912 = np.argmin( np.abs(eigen_wave-lambda_912) ) # Loop on redshift. If the if redshift is None: z0 = np.arange(zmnx[0],zmnx[1],z_wind) z1 = z0 + z_wind else: if np.isscalar(redshift): z0 = np.array([redshift]) else: z0 = redshift.copy() z1 = z0.copy() #+ z_wind pca_list = ['PCA0', 'PCA1', 'PCA2', 'PCA3'] PCA_mean = np.zeros(4) PCA_sig = np.zeros(4) PCA_rand = np.zeros((4,N_perz*ipad)) final_spec = np.zeros((npix, N_perz * len(z0))) final_wave = np.zeros((npix, N_perz * len(z0))) final_z = np.zeros(N_perz * len(z0)) # Random state if rstate is None: rstate = np.random.RandomState(seed) for ii in range(len(z0)): # BOSS or SDSS? if z0[ii] > 2.15: zQSO = boss_zQSO pca_coeff = boss_pca_coeff else: zQSO = sdss_zQSO pca_coeff = sdss_pca_coeff # Random z values and wavelengths zrand = rstate.uniform( z0[ii], z1[ii], N_perz*ipad) wave = np.outer(eigen_wave, 1+zrand) # MFP (Worseck+14) mfp = 37. * ( (1+zrand)/5. )**(-5.4) # Physical Mpc # Grab PCA mean + sigma if redshift is None: idx = np.where( (zQSO >= z0[ii]) & (zQSO < z1[ii]) )[0] else: # Hack by @moustakas: add a little jitter to get the set of QSOs # that are *nearest* in redshift to the desired output redshift. idx = np.where( (zQSO >= z0[ii]-0.01) & (zQSO < z1[ii]+0.01) )[0] if len(idx) == 0: idx = np.array([(np.abs(zQSO-zrand[0])).argmin()]) #pdb.set_trace() log.debug('Making z=({:g},{:g}) with {:d} input quasars'.format(z0[ii],z1[ii],len(idx))) # Get PCA stats and random values for jj,ipca in enumerate(pca_list): if jj == 0: # Use bounds for PCA0 [avoids negative values] xmnx = perc(pca_coeff[ipca][idx], per=95) PCA_rand[jj, :] = rstate.uniform(xmnx[0], xmnx[1], N_perz*ipad) else: PCA_mean[jj] = np.mean(pca_coeff[ipca][idx]) PCA_sig[jj] = np.std(pca_coeff[ipca][idx]) # Draws PCA_rand[jj, :] = rstate.uniform( PCA_mean[jj] - 2*PCA_sig[jj], PCA_mean[jj] + 2*PCA_sig[jj], N_perz*ipad) # Generate the templates (ipad*N_perz) spec = np.dot(eigen.T, PCA_rand) # Take first good N_perz # Truncate, MFP, Fill ngd = 0 nbad = 0 for kk in range(ipad*N_perz): # Any zero values? mn = np.min(spec[chkpix, kk]) if mn < 0.: nbad += 1 continue # MFP if z0[ii] > 2.39: z912 = wave[0:pix912,kk]/lambda_912 - 1. phys_dist = np.fabs( cosmo.lookback_distance(z912) - cosmo.lookback_distance(zrand[kk]) ) # Mpc spec[0:pix912, kk] = spec[0:pix912,kk] * np.exp(-phys_dist.value/mfp[kk]) # Write final_spec[:, ii*N_perz+ngd] = spec[:,kk] final_wave[:, ii*N_perz+ngd] = wave[:,kk] final_z[ii*N_perz+ngd] = zrand[kk] ngd += 1 if ngd == N_perz: break if ngd != N_perz: print('Did not make enough!') #pdb.set_trace() log.warning('Did not make enough qso templates. ngd = {}, N_perz = {}'.format(ngd,N_perz)) # Rebin if rebin_wave is None: light = 2.99792458e5 # [km/s] velpixsize = 10. # [km/s] pixsize = velpixsize/light/np.log(10) # [pixel size in log-10 A] minwave = np.log10(wvmnx[0]) # minimum wavelength [log10-A] maxwave = np.log10(wvmnx[1]) # maximum wavelength [log10-A] r_npix = np.round((maxwave-minwave)/pixsize+1) log_wave = minwave+np.arange(r_npix)*pixsize # constant log-10 spacing else: log_wave = np.log10(rebin_wave) r_npix = len(log_wave) totN = N_perz * len(z0) rebin_spec = np.zeros((r_npix, totN)) for ii in range(totN): # Interpolate (in log space) rebin_spec[:, ii] = resample_flux(log_wave, np.log10(final_wave[:, ii]), final_spec[:, ii]) #f1d = interp1d(np.log10(final_wave[:,ii]), final_spec[:,ii]) #rebin_spec[:,ii] = f1d(log_wave) if outfil is None: return 10.**log_wave, rebin_spec, final_z # Transpose for consistency out_spec = np.array(rebin_spec.T, dtype='float32') # Write hdu = fits.PrimaryHDU(out_spec) hdu.header.set('PROJECT', 'DESI QSO TEMPLATES') hdu.header.set('VERSION', '1.1') hdu.header.set('OBJTYPE', 'QSO') hdu.header.set('DISPAXIS', 1, 'dispersion axis') hdu.header.set('CRPIX1', 1, 'reference pixel number') hdu.header.set('CRVAL1', minwave, 'reference log10(Ang)') hdu.header.set('CDELT1', pixsize, 'delta log10(Ang)') hdu.header.set('LOGLAM', 1, 'log10 spaced wavelengths?') hdu.header.set('AIRORVAC', 'vac', ' wavelengths in vacuum (vac) or air') hdu.header.set('VELSCALE', velpixsize, ' pixel size in km/s') hdu.header.set('WAVEUNIT', 'Angstrom', ' wavelength units') hdu.header.set('BUNIT', '1e-17 erg/s/cm2/A', ' flux unit') idval = list(range(totN)) col0 = fits.Column(name=str('TEMPLATEID'),format=str('J'), array=idval) col1 = fits.Column(name=str('Z'),format=str('E'),array=final_z) cols = fits.ColDefs([col0, col1]) tbhdu = fits.BinTableHDU.from_columns(cols) tbhdu.header.set('EXTNAME','METADATA') hdulist = fits.HDUList([hdu, tbhdu]) hdulist.writeto(outfil, clobber=True) return final_wave, final_spec, final_z
def main(args): # Set up the logger if args.verbose: log = get_logger(DEBUG) else: log = get_logger() # Make sure all necessary environment variables are set setup_envs() # Initialize random number generator to use. np.random.seed(args.seed) random_state = np.random.RandomState(args.seed) # Derive spectrograph number from nstart if needed if args.spectrograph is None: args.spectrograph = args.nstart / args.n_fibers # Read fibermapfile to get object type, night and expid fibermap, objtype, night, expid = get_fibermap(args.fibermap, log=log, nspec=args.nspec) # Initialize the spectral simulator log.info("Initializing SpecSim with config {}".format(args.config)) lvmparams = load_lvmparams(config=args.config, telescope=args.telescope) qsim = get_simulator(args.config, num_fibers=1, params=lvmparams) if args.simspec: # Read the input file log.info('Reading input file {}'.format(args.simspec)) simspec = lvmsim.io.read_simspec(args.simspec) nspec = simspec.nspec if simspec.flavor == 'arc': # - TODO: do we need quickgen to support arcs? For full pipeline # - arcs are used to measure PSF but aren't extracted except for # - debugging. # - TODO: if we do need arcs, this needs to be redone. # - conversion from phot to flux doesn't include throughput, # - and arc lines are rebinned to nearest 0.2 A. # Create full wavelength and flux arrays for arc exposure wave_b = np.array(simspec.wave['b']) wave_r = np.array(simspec.wave['r']) wave_z = np.array(simspec.wave['z']) phot_b = np.array(simspec.phot['b'][0]) phot_r = np.array(simspec.phot['r'][0]) phot_z = np.array(simspec.phot['z'][0]) sim_wave = np.concatenate((wave_b, wave_r, wave_z)) sim_phot = np.concatenate((phot_b, phot_r, phot_z)) wavelengths = np.arange(3533., 9913.1, 0.2) phot = np.zeros(len(wavelengths)) for i in range(len(sim_wave)): wavelength = sim_wave[i] flux_index = np.argmin(abs(wavelength - wavelengths)) phot[flux_index] = sim_phot[i] # Convert photons to flux: following specter conversion method dw = np.gradient(wavelengths) exptime = 5. # typical BOSS exposure time in s fibarea = const.pi * (1.07e-2 / 2)**2 # cross-sectional fiber area in cm^2 hc = 1.e17 * const.h * const.c # convert to erg A spectra = (hc * exptime * fibarea * dw * phot) / wavelengths else: wavelengths = simspec.wave['brz'] spectra = simspec.flux if nspec < args.nspec: log.info("Only {} spectra in input file".format(nspec)) args.nspec = nspec else: # Initialize the output truth table. spectra = [] wavelengths = qsim.source.wavelength_out.to(u.Angstrom).value npix = len(wavelengths) truth = dict() meta = Table() truth['OBJTYPE'] = np.zeros(args.nspec, dtype=(str, 10)) truth['FLUX'] = np.zeros((args.nspec, npix)) truth['WAVE'] = wavelengths jj = list() for thisobj in set(true_objtype): ii = np.where(true_objtype == thisobj)[0] nobj = len(ii) truth['OBJTYPE'][ii] = thisobj log.info('Generating {} template'.format(thisobj)) # Generate the templates if thisobj == 'ELG': elg = lvmsim.templates.ELG(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = elg.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_elg, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'LRG': lrg = lvmsim.templates.LRG(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = lrg.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_lrg, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'QSO': qso = lvmsim.templates.QSO(wave=wavelengths) flux, tmpwave, meta1 = qso.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_qso) elif thisobj == 'BGS': bgs = lvmsim.templates.BGS(wave=wavelengths, add_SNeIa=args.add_SNeIa) flux, tmpwave, meta1 = bgs.make_templates( nmodel=nobj, seed=args.seed, zrange=args.zrange_bgs, rmagrange=args.rmagrange_bgs, sne_rfluxratiorange=args.sne_rfluxratiorange) elif thisobj == 'STD': fstd = lvmsim.templates.FSTD(wave=wavelengths) flux, tmpwave, meta1 = fstd.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'QSO_BAD': # use STAR template no color cuts star = lvmsim.templates.STAR(wave=wavelengths) flux, tmpwave, meta1 = star.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'MWS_STAR' or thisobj == 'MWS': mwsstar = lvmsim.templates.MWS_STAR(wave=wavelengths) flux, tmpwave, meta1 = mwsstar.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'WD': wd = lvmsim.templates.WD(wave=wavelengths) flux, tmpwave, meta1 = wd.make_templates(nmodel=nobj, seed=args.seed) elif thisobj == 'SKY': flux = np.zeros((nobj, npix)) meta1 = Table(dict(REDSHIFT=np.zeros(nobj, dtype=np.float32))) elif thisobj == 'TEST': flux = np.zeros((args.nspec, npix)) indx = np.where(wave > 5800.0 - 1E-6)[0][0] ref_integrated_flux = 1E-10 ref_cst_flux_density = 1E-17 single_line = (np.arange(args.nspec) % 2 == 0).astype( np.float32) continuum = (np.arange(args.nspec) % 2 == 1).astype(np.float32) for spec in range(args.nspec): flux[spec, indx] = single_line[ spec] * ref_integrated_flux / np.gradient(wavelengths)[ indx] # single line flux[spec] += continuum[ spec] * ref_cst_flux_density # flat continuum meta1 = Table( dict(REDSHIFT=np.zeros(args.nspec, dtype=np.float32), LINE=wave[indx] * np.ones(args.nspec, dtype=np.float32), LINEFLUX=single_line * ref_integrated_flux, CONSTFLUXDENSITY=continuum * ref_cst_flux_density)) else: log.fatal('Unknown object type {}'.format(thisobj)) sys.exit(1) # Pack it in. truth['FLUX'][ii] = flux meta = vstack([meta, meta1]) jj.append(ii.tolist()) # Sanity check on units; templates currently return ergs, not 1e-17 ergs... # assert (thisobj == 'SKY') or (np.max(truth['FLUX']) < 1e-6) # Sort the metadata table. jj = sum(jj, []) meta_new = Table() for k in range(args.nspec): index = int(np.where(np.array(jj) == k)[0]) meta_new = vstack([meta_new, meta[index]]) meta = meta_new # Add TARGETID and the true OBJTYPE to the metadata table. meta.add_column( Column(true_objtype, dtype=(str, 10), name='TRUE_OBJTYPE')) meta.add_column(Column(targetids, name='TARGETID')) # Rename REDSHIFT -> TRUEZ anticipating later table joins with zbest.Z meta.rename_column('REDSHIFT', 'TRUEZ') # ---------- end simspec # explicitly set location on focal plane if needed to support airmass # variations when using specsim v0.5 if qsim.source.focal_xy is None: qsim.source.focal_xy = (u.Quantity(0, 'mm'), u.Quantity(100, 'mm')) # Set simulation parameters from the simspec header or lvmparams bright_objects = ['bgs', 'mws', 'bright', 'BGS', 'MWS', 'BRIGHT_MIX'] gray_objects = ['gray', 'grey'] if args.simspec is None: object_type = objtype flavor = None elif simspec.flavor == 'science': object_type = None flavor = simspec.header['PROGRAM'] else: object_type = None flavor = simspec.flavor log.warning( 'Maybe using an outdated simspec file with flavor={}'.format( flavor)) # Set airmass if args.airmass is not None: qsim.atmosphere.airmass = args.airmass elif args.simspec and 'AIRMASS' in simspec.header: qsim.atmosphere.airmass = simspec.header['AIRMASS'] else: qsim.atmosphere.airmass = 1.25 # Science Req. Doc L3.3.2 # Set site location if args.location is not None: qsim.observation.observatory = args.location else: qsim.observation.observatory = 'APO' # Set exptime if args.exptime is not None: qsim.observation.exposure_time = args.exptime * u.s elif args.simspec and 'EXPTIME' in simspec.header: qsim.observation.exposure_time = simspec.header['EXPTIME'] * u.s elif objtype in bright_objects: qsim.observation.exposure_time = lvmparams['exptime_bright'] * u.s else: qsim.observation.exposure_time = lvmparams['exptime_dark'] * u.s # Set Moon Phase if args.moon_phase is not None: qsim.atmosphere.moon.moon_phase = args.moon_phase elif args.simspec and 'MOONFRAC' in simspec.header: qsim.atmosphere.moon.moon_phase = simspec.header['MOONFRAC'] elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.moon_phase = 0.7 elif flavor in gray_objects: qsim.atmosphere.moon.moon_phase = 0.1 else: qsim.atmosphere.moon.moon_phase = 0.5 # Set Moon Zenith if args.moon_zenith is not None: qsim.atmosphere.moon.moon_zenith = args.moon_zenith * u.deg elif args.simspec and 'MOONALT' in simspec.header: qsim.atmosphere.moon.moon_zenith = simspec.header['MOONALT'] * u.deg elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.moon_zenith = 30 * u.deg elif flavor in gray_objects: qsim.atmosphere.moon.moon_zenith = 80 * u.deg else: qsim.atmosphere.moon.moon_zenith = 100 * u.deg # Set Moon - Object Angle if args.moon_angle is not None: qsim.atmosphere.moon.separation_angle = args.moon_angle * u.deg elif args.simspec and 'MOONSEP' in simspec.header: qsim.atmosphere.moon.separation_angle = simspec.header[ 'MOONSEP'] * u.deg elif flavor in bright_objects or object_type in bright_objects: qsim.atmosphere.moon.separation_angle = 50 * u.deg elif flavor in gray_objects: qsim.atmosphere.moon.separation_angle = 60 * u.deg else: qsim.atmosphere.moon.separation_angle = 60 * u.deg # Initialize per-camera output arrays that will be saved waves, trueflux, noisyflux, obsivar, resolution, sflux = {}, {}, {}, {}, {}, {} maxbin = 0 nmax = args.nspec for camera in qsim.instrument.cameras: # Lookup this camera's resolution matrix and convert to the sparse format used in lvmspec. R = Resolution(camera.get_output_resolution_matrix()) resolution[camera.name] = np.tile(R.to_fits_array(), [args.nspec, 1, 1]) waves[camera.name] = (camera.output_wavelength.to( u.Angstrom).value.astype(np.float32)) nwave = len(waves[camera.name]) maxbin = max(maxbin, len(waves[camera.name])) nobj = np.zeros((nmax, 3, maxbin)) # object photons nsky = np.zeros((nmax, 3, maxbin)) # sky photons nivar = np.zeros((nmax, 3, maxbin)) # inverse variance (object+sky) cframe_observedflux = np.zeros( (nmax, 3, maxbin)) # calibrated object flux cframe_ivar = np.zeros( (nmax, 3, maxbin)) # inverse variance of calibrated object flux cframe_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to calibrated flux sky_ivar = np.zeros((nmax, 3, maxbin)) # inverse variance of sky sky_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to sky only frame_rand_noise = np.zeros( (nmax, 3, maxbin)) # random Gaussian noise to nobj+nsky trueflux[camera.name] = np.empty( (args.nspec, nwave)) # calibrated flux noisyflux[camera.name] = np.empty( (args.nspec, nwave)) # observed flux with noise obsivar[camera.name] = np.empty( (args.nspec, nwave)) # inverse variance of flux if args.simspec: dw = np.gradient(simspec.wave[camera.name]) else: sflux = np.empty((args.nspec, npix)) # - Check if input simspec is for a continuum flat lamp instead of science # - This does not convolve to per-fiber resolution if args.simspec: if simspec.flavor == 'flat': log.info("Simulating flat lamp exposure") for i, camera in enumerate(qsim.instrument.cameras): channel = camera.name assert camera.output_wavelength.unit == u.Angstrom num_pixels = len(waves[channel]) dw = np.gradient(simspec.wave[channel]) meanspec = resample_flux( waves[channel], simspec.wave[channel], np.average(simspec.phot[channel] / dw, axis=0)) fiberflat = random_state.normal(loc=1.0, scale=1.0 / np.sqrt(meanspec), size=(nspec, num_pixels)) ivar = np.tile(meanspec, [nspec, 1]) mask = np.zeros((simspec.nspec, num_pixels), dtype=np.uint32) for kk in range((args.nspec + args.nstart - 1) // args.n_fibers + 1): camera = channel + str(kk) outfile = lvmspec.io.findfile('fiberflat', night, expid, camera) start = max(args.n_fibers * kk, args.nstart) end = min(args.n_fibers * (kk + 1), nmax) if (args.spectrograph <= kk): log.info( "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}" .format(channel, kk, start, end)) ff = FiberFlat(waves[channel], fiberflat[start:end, :], ivar[start:end, :], mask[start:end, :], meanspec, header=dict(CAMERA=camera)) write_fiberflat(outfile, ff) filePath = lvmspec.io.findfile("fiberflat", night, expid, camera) log.info("Wrote file {}".format(filePath)) sys.exit(0) # Repeat the simulation for all spectra scale = 1e-17 fluxunits = scale * u.erg / (u.s * u.cm**2 * u.Angstrom) for j in range(args.nspec): thisobjtype = objtype[j] sys.stdout.flush() if flavor == 'arc': qsim.source.update_in('Quickgen source {0}'.format, 'perfect', wavelengths * u.Angstrom, spectra * fluxunits) else: qsim.source.update_in('Quickgen source {0}'.format(j), thisobjtype.lower(), wavelengths * u.Angstrom, spectra[j, :] * fluxunits) qsim.source.update_out() qsim.simulate() qsim.generate_random_noise(random_state) for i, output in enumerate(qsim.camera_output): assert output['observed_flux'].unit == 1e17 * fluxunits # Extract the simulation results needed to create our uncalibrated # frame output file. num_pixels = len(output) nobj[j, i, :num_pixels] = output['num_source_electrons'][:, 0] nsky[j, i, :num_pixels] = output['num_sky_electrons'][:, 0] nivar[j, i, :num_pixels] = 1.0 / output['variance_electrons'][:, 0] # Get results for our flux-calibrated output file. cframe_observedflux[ j, i, :num_pixels] = 1e17 * output['observed_flux'][:, 0] cframe_ivar[ j, i, :num_pixels] = 1e-34 * output['flux_inverse_variance'][:, 0] # Fill brick arrays from the results. camera = output.meta['name'] trueflux[camera][j][:] = 1e17 * output['observed_flux'][:, 0] noisyflux[camera][j][:] = 1e17 * ( output['observed_flux'][:, 0] + output['flux_calibration'][:, 0] * output['random_noise_electrons'][:, 0]) obsivar[camera][j][:] = 1e-34 * output['flux_inverse_variance'][:, 0] # Use the same noise realization in the cframe and frame, without any # additional noise from sky subtraction for now. frame_rand_noise[ j, i, :num_pixels] = output['random_noise_electrons'][:, 0] cframe_rand_noise[j, i, :num_pixels] = 1e17 * ( output['flux_calibration'][:, 0] * output['random_noise_electrons'][:, 0]) # The sky output file represents a model fit to ~40 sky fibers. # We reduce the variance by a factor of 25 to account for this and # give the sky an independent (Gaussian) noise realization. sky_ivar[ j, i, :num_pixels] = 25.0 / (output['variance_electrons'][:, 0] - output['num_source_electrons'][:, 0]) sky_rand_noise[j, i, :num_pixels] = random_state.normal( scale=1.0 / np.sqrt(sky_ivar[j, i, :num_pixels]), size=num_pixels) armName = {"b": 0, "r": 1, "z": 2} for channel in 'brz': # Before writing, convert from counts/bin to counts/A (as in Pixsim output) # Quicksim Default: # FLUX - input spectrum resampled to this binning; no noise added [1e-17 erg/s/cm2/s/Ang] # COUNTS_OBJ - object counts in 0.5 Ang bin # COUNTS_SKY - sky counts in 0.5 Ang bin num_pixels = len(waves[channel]) dwave = np.gradient(waves[channel]) nobj[:, armName[channel], :num_pixels] /= dwave frame_rand_noise[:, armName[channel], :num_pixels] /= dwave nivar[:, armName[channel], :num_pixels] *= dwave**2 nsky[:, armName[channel], :num_pixels] /= dwave sky_rand_noise[:, armName[channel], :num_pixels] /= dwave sky_ivar[:, armName[channel], :num_pixels] /= dwave**2 # Now write the outputs in DESI standard file system. None of the output file can have more than args.n_fibers spectra # Looping over spectrograph for ii in range((args.nspec + args.nstart - 1) // args.n_fibers + 1): start = max(args.n_fibers * ii, args.nstart) # first spectrum for a given spectrograph end = min(args.n_fibers * (ii + 1), nmax) # last spectrum for the spectrograph if (args.spectrograph <= ii): camera = "{}{}".format(channel, ii) log.info( "Writing files for channel:{}, spectrograph:{}, spectra:{} to {}" .format(channel, ii, start, end)) num_pixels = len(waves[channel]) # Write frame file framefileName = lvmspec.io.findfile("frame", night, expid, camera) frame_flux = nobj[start:end, armName[channel], :num_pixels] + \ nsky[start:end, armName[channel], :num_pixels] + \ frame_rand_noise[start:end, armName[channel], :num_pixels] frame_ivar = nivar[start:end, armName[channel], :num_pixels] # required for slicing the resolution metric, resolusion matrix has (nspec, ndiag, wave) # for example if nstart =400, nspec=150: two spectrographs: # 400-499=> 0 spectrograph, 500-549 => 1 sh1 = frame_flux.shape[0] if (args.nstart == start): resol = resolution[channel][:sh1, :, :] else: resol = resolution[channel][-sh1:, :, :] # must create lvmspec.Frame object frame = Frame(waves[channel], frame_flux, frame_ivar, resolution_data=resol, spectrograph=ii, fibermap=fibermap[start:end], meta=dict(CAMERA=camera, FLAVOR=simspec.flavor)) lvmspec.io.write_frame(framefileName, frame) framefilePath = lvmspec.io.findfile("frame", night, expid, camera) log.info("Wrote file {}".format(framefilePath)) if args.frameonly or simspec.flavor == 'arc': continue # Write cframe file cframeFileName = lvmspec.io.findfile("cframe", night, expid, camera) cframeFlux = cframe_observedflux[start:end, armName[channel], :num_pixels] + \ cframe_rand_noise[start:end, armName[channel], :num_pixels] cframeIvar = cframe_ivar[start:end, armName[channel], :num_pixels] # must create lvmspec.Frame object cframe = Frame(waves[channel], cframeFlux, cframeIvar, resolution_data=resol, spectrograph=ii, fibermap=fibermap[start:end], meta=dict(CAMERA=camera, FLAVOR=simspec.flavor)) lvmspec.io.frame.write_frame(cframeFileName, cframe) cframefilePath = lvmspec.io.findfile("cframe", night, expid, camera) log.info("Wrote file {}".format(cframefilePath)) # Write sky file skyfileName = lvmspec.io.findfile("sky", night, expid, camera) skyflux = nsky[start:end, armName[channel], :num_pixels] + \ sky_rand_noise[start:end, armName[channel], :num_pixels] skyivar = sky_ivar[start:end, armName[channel], :num_pixels] skymask = np.zeros(skyflux.shape, dtype=np.uint32) # must create lvmspec.Sky object skymodel = SkyModel(waves[channel], skyflux, skyivar, skymask, header=dict(CAMERA=camera)) lvmspec.io.sky.write_sky(skyfileName, skymodel) skyfilePath = lvmspec.io.findfile("sky", night, expid, camera) log.info("Wrote file {}".format(skyfilePath)) # Write calib file calibVectorFile = lvmspec.io.findfile("calib", night, expid, camera) flux = cframe_observedflux[start:end, armName[channel], :num_pixels] phot = nobj[start:end, armName[channel], :num_pixels] calibration = np.zeros_like(phot) jj = (flux > 0) calibration[jj] = phot[jj] / flux[jj] # - TODO: what should calibivar be? # - For now, model it as the noise of combining ~10 spectra calibivar = 10 / cframe_ivar[start:end, armName[channel], :num_pixels] # mask=(1/calibivar>0).astype(int)?? mask = np.zeros(calibration.shape, dtype=np.uint32) # write flux calibration fluxcalib = FluxCalib(waves[channel], calibration, calibivar, mask) write_flux_calibration(calibVectorFile, fluxcalib) calibfilePath = lvmspec.io.findfile("calib", night, expid, camera) log.info("Wrote file {}".format(calibfilePath))