示例#1
0
""".format(variables['vs_n']['best'], variables['am_n']['best'],
           variables['fw_n']['best'], variables['vs_b']['best'],
           variables['am_b']['best'], variables['fw_b']['best'],
           variables['h1_col']['best'], variables['h1_b']['best'],
           variables['h1_vel']['best'], variables['d2h']['best']))

    print("Mean acceptance fraction: {0:.3f}".format(
        np.mean(sampler.acceptance_fraction)))
    print("should be between 0.25 and 0.5")

    ## best fit intrinsic profile
    lya_intrinsic_profile_mcmc, lya_intrinsic_flux_mcmc = lyapy.lya_intrinsic_profile_func(
        wave_to_fit,
        variables['vs_n']['best'][0],
        10**variables['am_n']['best'][0],
        variables['fw_n']['best'][0],
        variables['vs_b']['best'][0],
        10**variables['am_b']['best'][0],
        variables['fw_b']['best'][0],
        return_flux=True,
        single_component_flux=variables['am_b']['single_comp'])

    ## best fit attenuated profile
    model_best_fit = lyapy.damped_lya_profile(
        wave_to_fit,
        variables['vs_n']['best'][0],
        10**variables['am_n']['best'][0],
        variables['fw_n']['best'][0],
        variables['vs_b']['best'][0],
        10**variables['am_b']['best'][0],
        variables['fw_b']['best'][0],
        variables['h1_col']['best'][0],
示例#2
0
     h1_col = {6[0]} +{6[1]} -{6[2]}
     h1_b = {7[0]} +{7[1]} -{7[2]}
     h1_vel = {8[0]} +{8[1]} -{8[2]}
 
 """.format(vs_n_mcmc, am_n_mcmc, fw_n_mcmc, vs_b_mcmc, am_b_mcmc, fw_b_mcmc, h1_col_mcmc, 
            h1_b_mcmc, h1_vel_mcmc))
 
 print("Mean acceptance fraction: {0:.3f}"
                 .format(np.mean(sampler.acceptance_fraction)))
 print("should be between 0.25 and 0.5")
 print ""
 
 
 ## best fit intrinsic profile
 lya_intrinsic_profile_mcmc,lya_intrinsic_flux_mcmc = lyapy.lya_intrinsic_profile_func(wave_to_fit,
          vs_n_mcmc[0],10**am_n_mcmc[0],fw_n_mcmc[0],vs_b_mcmc[0],10**am_b_mcmc[0],fw_b_mcmc[0],
          return_flux=True)
 
 ## best fit attenuated profile
 model_best_fit = lyapy.damped_lya_profile(wave_to_fit,vs_n_mcmc[0],10.**am_n_mcmc[0],fw_n_mcmc[0],
                                           vs_b_mcmc[0],10.**am_b_mcmc[0],fw_b_mcmc[0],h1_col_mcmc[0],
                                           h1_b_mcmc[0],h1_vel_mcmc[0],d2h_true,resolution,
                                           single_component_flux=single_component_flux)/1.e14
 
 'Here I will calculate 1-sigma errors on the total integrated flux' 
 print "Calculating Total Flux Errors..." 
 print ""                                        
 flux_errors = []
 
 vs_n_errors = samples[:,0]
 am_n_errors = samples[:,1]
示例#3
0
def profile(wave_to_fit,
            flux_to_fit,
            error_to_fit,
            resolution,
            sig1_16,
            sig1_84,
            model_best_fit,
            lya_intrinsic_profile_mcmc,
            samples=None,
            d2h_true=1.5e-5):

    f = plt.figure()
    plt.rc('text', usetex=False)
    #plt.rc('font', family='serif', size=14)
    ax = f.add_subplot(1, 1, 1)

    #      ## plots 1 sigma contours of the Lya profile
    #      if samples is not None:
    #          ndim = len(samples[0])
    #          print 'ndim:',ndim
    #          if ndim == 9:
    #              singcomp = False
    #              vs_n_mcmc, am_n_mcmc, fw_n_mcmc, vs_b_mcmc, am_b_mcmc, fw_b_mcmc, h1_col_mcmc, h1_b_mcmc, \
    #                                        h1_vel_mcmc  = map(lambda v: [v[1], v[2]-v[1], v[1]-v[0]], \
    #                                        zip(*np.percentile(samples, [16, 50, 84], axis=0)))
    #          else:
    #              singcomp = True
    #              vs_n_mcmc, am_n_mcmc, fw_n_mcmc, h1_col_mcmc, h1_b_mcmc, \
    #                                        h1_vel_mcmc  = map(lambda v: [v[1], v[2]-v[1], v[1]-v[0]], \
    #                                        zip(*np.percentile(samples, [16, 50, 84], axis=0)))
    #              vs_b_mcmc, am_b_mcmc, fw_b_mcmc = 0., 0., 0
    #
    #          model_fits = np.zeros((len(samples),len(wave_to_fit)))
    #          #for i, sample in enumerate(samples[np.random.randint(len(samples), size=10)]):
    #          for i, sample in enumerate(samples):
    #              if ndim == 9:
    #                 vs_n_i, am_n_i, fw_n_i, vs_b_i, am_b_i, fw_b_i, h1_col_i, h1_b_i, \
    #                                            h1_vel_i = sample
    #              else:
    #                 vs_n_i, am_n_i, fw_n_i, h1_col_i, h1_b_i, \
    #                                            h1_vel_i = sample
    #                 vs_b_i, am_b_i, fw_b_i = 0., 0., 0.
    #
    #              model_fit = lyapy.damped_lya_profile(wave_to_fit,vs_n_i,10**am_n_i,fw_n_i,
    #                                                    vs_b_i,10**am_b_i,fw_b_i,h1_col_i,
    #                                                    h1_b_i,h1_vel_i,d2h_true,resolution,
    #                                                    single_component_flux=singcomp)/1e14
    #              model_fits[i,:] = model_fit*1e14
    #              #plt.plot(wave_to_fit,model_fit,'deeppink',linewidth=1., alpha=0.1)
    #          low = np.zeros_like(wave_to_fit)
    #          mid = np.zeros_like(wave_to_fit)
    #          high = np.zeros_like(wave_to_fit)
    #          for i in np.arange(len(wave_to_fit)):
    #              low[i], mid[i], high[i] = np.percentile(model_fits[:,i], [16,50,84])
    #          plt.fill_between(wave_to_fit, low, high)
    #
    #      # end 1 sigma contours plotting
    '''I commented the histogram stuff, making a normal plot for the data'''

    #ax.step(wave_to_fit,flux_to_fit,'k',label='Stacked STIS Spectrum')
    ax.plot(wave_to_fit,
            flux_to_fit * 1e14,
            'k',
            label='Stacked STIS Spectrum')
    """Creating my own 1-sigma deviation models, or perhaps just a random subset"""
    vs_n_extras = samples[:, 0]
    am_n_extras = samples[:, 1]
    fw_n_extras = samples[:, 2]
    vs_b_extras = samples[:, 3]
    am_b_extras = samples[:, 4]
    fw_b_extras = samples[:, 5]

    #      for i in range(0,len(vs_n_extras),20000):
    #          lya_intrinsic_profile_TEST,lya_intrinsic_flux_TEST = lyapy.lya_intrinsic_profile_func(wave_to_fit,
    #             vs_n_extras[i],10**am_n_extras[i],fw_n_extras[i],vs_b_extras[i],10**am_b_extras[i],fw_b_extras[i],
    #             return_flux=True)
    #          int_flux = np.sum(lya_intrinsic_profile_TEST*0.05336)
    #
    #          if (int_flux >= sig1_16 and int_flux <= sig1_84):
    #              ax.plot(wave_to_fit,lya_intrinsic_profile_TEST*1e14,color='gray',alpha = 0.1,
    #                      linewidth=1.0,zorder=-1000)

    lya_intrinsic_profile_TEST, lya_intrinsic_flux_TEST = lyapy.lya_intrinsic_profile_func(
        wave_to_fit,
        vs_n_extras,
        10**am_n_extras,
        fw_n_extras,
        vs_b_extras,
        10**am_b_extras,
        fw_b_extras,
        return_flux=True)

    int_flux = np.sum(lya_intrinsic_profile_TEST * 0.05336)

    #sig1_plots = np.where(int_flux >= sig1_16 and int_flux <= sig1_84)

    for i in range(len(int_flux)):
        if (int_flux[i] >= sig1_16 and int_flux[i] <= sig1_84):
            #mod = sig1_plots[i]
            ax.plot(wave_to_fit,
                    lya_intrinsic_profile_TEST[i] * 1e14,
                    color='gray',
                    alpha=0.05,
                    linewidth=1.0,
                    zorder=-1000)
    """done creating 1-sigma models"""

    #short_wave = np.linspace(wave_to_fit[0],wave_to_fit[-1],25)
    #error_bars_short = np.interp(short_wave,wave_to_fit,error_to_fit)
    #short_flux = np.interp(short_wave,wave_to_fit,flux_to_fit)
    #ax.errorbar(short_wave,short_flux,yerr=error_bars_short,
    #            fmt="none",ecolor='limegreen',elinewidth=3,capthick=3)
    ax.errorbar(wave_to_fit,
                flux_to_fit * 1e14,
                yerr=error_to_fit * 1e14,
                fmt="none",
                ecolor='black',
                elinewidth=3,
                capthick=3)

    ax.plot(wave_to_fit,
            model_best_fit * 1e14,
            'deeppink',
            linewidth=1.5,
            label='ISM Absorption Model')
    ax.plot(wave_to_fit,
            lya_intrinsic_profile_mcmc * 1e14,
            'b--',
            linewidth=1.3,
            label='Modeled Intrinsic Emission')

    #      chi2_mcmc = np.sum( ( (flux_to_fit[~mask] - model_best_fit[~mask]) / error_to_fit[~mask] )**2 )
    #      dof_mcmc = len(flux_to_fit[~mask]) - ndim - 1 #####
    #
    #      ax.step(wave_to_fit[mask],flux_to_fit[mask],'lightblue',linewidth=0.8) ## plotting "masked" region

    ax.set_ylabel(
        'Flux (x10$^{-14}$ erg s$^{-1}$ cm$^{-2}$ $\mathrm {\AA}^{-1}$)',
        fontsize=14)
    ax.set_xlabel('Wavelength ($\mathrm {\AA}$)', fontsize=14)

    # defining max of y axis
    y_max = np.max(
        np.array([np.max(flux_to_fit),
                  np.max(lya_intrinsic_profile_mcmc)])) * 1e14
    y_min = 0.0
    ax.set_ylim([y_min, y_max + 0.5])
    #ax.set_xlim( [np.min(wave_to_fit),np.max(wave_to_fit)] )
    ax.set_xlim(1214.7, 1217.2)
    plt.legend(frameon=False)
    plt.ticklabel_format(useOffset=False)
    plt.title(r'Intrinsic Lyman-$\alpha$ Spectrum')

    plt.tight_layout()
    plt.savefig('/Users/willwaalkes/Desktop/GJ1132b_profile.pdf',
                dpi=500,
                clobber=True)
    '''comment everything under this?'''


#      am_n_mcmc_float_str = "{0:.2g}".format(10**am_n_mcmc[0])
#      base, exponent = am_n_mcmc_float_str.split("e")
#      am_n_exponent = float('1e'+exponent)
#
#
#      # Inserting text
#      ax.text(0.03,0.97,'V$_n$ = ' + str(round(vs_n_mcmc[0],1)) + '$^{+' + str(round(vs_n_mcmc[1],1)) + '}_{-' + str(round(vs_n_mcmc[2],1)) + '}$',
#        verticalalignment='top',horizontalalignment='left',transform=ax.transAxes,
#        fontsize=12., color='black')
#      am_n_p = (10**(am_n_mcmc[0] + am_n_mcmc[1])-10**am_n_mcmc[0])/am_n_exponent
#      am_n_m = (10**am_n_mcmc[0]-10**(am_n_mcmc[0] - am_n_mcmc[2]))/am_n_exponent
#      ax.text(0.03,0.91,'A$_n$ = ('+ str(round(10**am_n_mcmc[0]/am_n_exponent,1)) + '$^{+' + str(round(am_n_p,1)) + '}_{-' + str(round(am_n_m,1)) + '}$) ' + r'$\times$'+ ' 10$^{' + str(exponent) + '}$',
#verticalalignment='top',horizontalalignment='left',
#        transform=ax.transAxes,fontsize=12., color='black')
#
#
#      ax.text(0.03,0.85,'FW$_n$ = '+ str(round(fw_n_mcmc[0],1)) + '$^{+' + str(round(fw_n_mcmc[1],1)) + '}_{-' + str(round(fw_n_mcmc[2],1)) + '}$',
#        verticalalignment='top',horizontalalignment='left',transform=ax.transAxes,fontsize=12.,
#        color='black')
#      ax.text(0.03,0.79,'V$_b$ = '+ str(round(vs_b_mcmc[0],1)) + '$^{+' + str(round(vs_b_mcmc[1],1)) + '}_{-' + str(round(vs_b_mcmc[2],1)) + '}$',
#        verticalalignment='top',horizontalalignment='left',transform=ax.transAxes,fontsize=12.,
#        color='black')
#
#      am_b_p = (10**(am_b_mcmc[0] + am_b_mcmc[1])-10**am_b_mcmc[0])/am_n_exponent
#      am_b_m = (10**am_b_mcmc[0]-10**(am_b_mcmc[0] - am_b_mcmc[2]))/am_n_exponent
#      ax.text(0.03,0.73,'A$_b$ = ('+ str(round(10**am_b_mcmc[0]/am_n_exponent,2)) + '$^{+' + str(round(am_b_p,2)) + '}_{-' + str(round(am_b_m,2)) + '}$) ' + r'$\times$'+ ' 10$^{' + str(exponent) + '}$',
#verticalalignment='top',horizontalalignment='left',
#        transform=ax.transAxes,fontsize=12., color='black')
#
#      ax.text(0.03,0.67,'FW$_b$ = '+ str(round(fw_b_mcmc[0],1)) + '$^{+' + str(round(fw_b_mcmc[1],0)) + '}_{-' + str(round(fw_b_mcmc[2],0)) + '}$',
#        verticalalignment='top',horizontalalignment='left',transform=ax.transAxes,fontsize=12.,
#        color='black')
#      ax.text(0.03,0.61,'log N(HI) = '+ str(round(h1_col_mcmc[0],2)) + '$^{+' + str(round(h1_col_mcmc[1],2)) + '}_{-' + str(round(h1_col_mcmc[2],2)) + '}$',
#        verticalalignment='top',horizontalalignment='left',
#        transform=ax.transAxes,fontsize=12., color='black')
#      ax.text(0.03,0.55,'b = '+ str(round(h1_b_mcmc[0],1)) + '$^{+' + str(round(h1_b_mcmc[1],1)) + '}_{-' + str(round(h1_b_mcmc[2],1)) + '}$',
#        verticalalignment='top',horizontalalignment='left',transform=ax.transAxes,fontsize=12.,
#        color='black')
#      ax.text(0.03,0.49,'V$_{HI}$ = '+ str(round(h1_vel_mcmc[0],1)) + '$^{+' + str(round(h1_vel_mcmc[1],1)) + '}_{-' + str(round(h1_vel_mcmc[2],1)) + '}$',verticalalignment='top',horizontalalignment='left',
#        transform=ax.transAxes,fontsize=12., color='black')
#      ax.text(0.03,0.43,r'D/H = 1.5$\times$10$^{-5}$',verticalalignment='top',horizontalalignment='left',
#        transform=ax.transAxes,fontsize=12., color='black')
#
#
#      lya_intrinsic_flux_argument = float(("%e" % lya_intrinsic_flux_mcmc).split('e')[0])
#      lya_intrinsic_flux_exponent = float(("%e" % lya_intrinsic_flux_mcmc).split('e')[1])
#      ax.text(0.65,0.98,r'Ly$\alpha$ flux= ('+ str(round(lya_intrinsic_flux_argument,2)) + '$^{+' + str(round(lya_intrinsic_flux_max_error/10**lya_intrinsic_flux_exponent,2)) + '}_{-' + str(round(lya_intrinsic_flux_min_error/10**lya_intrinsic_flux_exponent,2)) + '}$) ' + r'$\times$'+ ' 10$^{' + str(int(lya_intrinsic_flux_exponent)) + '}$',
#        verticalalignment='top',horizontalalignment='left',
#        transform=ax.transAxes,fontsize=12., color='black')
#      ax.text(0.97,0.93,r'erg s$^{-1}$ cm$^{-2}$',verticalalignment='top',horizontalalignment='right',
#        transform=ax.transAxes,fontsize=12., color='black')
#      ax.text(0.97,0.88,r'$\chi^{2}_{\nu}$ = ' + str(round(chi2_mcmc/dof_mcmc,1)),verticalalignment='top',horizontalalignment='right',
#        transform=ax.transAxes,fontsize=12., color='black')
#
#      #outfile_str = spec_header['STAR'] + descrip + '_bestfit.png'
#      outfile_str = 'GJ1132' + descrip + '_bestfit.png'
#      plt.savefig(outfile_str)
示例#4
0
    fw_b = {5[0]} +{5[1]} -{5[2]}
    h1_col = {6[0]} +{6[1]} -{6[2]}
    h1_b = {7[0]} +{7[1]} -{7[2]}
    h1_vel = {8[0]} +{8[1]} -{8[2]}

""".format(vs_n_mcmc, am_n_mcmc, fw_n_mcmc, vs_b_mcmc, am_b_mcmc, fw_b_mcmc, h1_col_mcmc, 
           h1_b_mcmc, h1_vel_mcmc))

print("Mean acceptance fraction: {0:.3f}"
                .format(np.mean(sampler.acceptance_fraction)))
print("should be between 0.25 and 0.5")


## best fit intrinsic profile
lya_intrinsic_profile_mcmc,lya_intrinsic_flux_mcmc = lyapy.lya_intrinsic_profile_func(wave_to_fit,
         vs_n_mcmc[0],10**am_n_mcmc[0],fw_n_mcmc[0],vs_b_mcmc[0],10**am_b_mcmc[0],fw_b_mcmc[0],
         return_flux=True)

## best fit attenuated profile
model_best_fit = lyapy.damped_lya_profile(wave_to_fit,vs_n_mcmc[0],10**am_n_mcmc[0],fw_n_mcmc[0],
                                          vs_b_mcmc[0],10**am_b_mcmc[0],fw_b_mcmc[0],h1_col_mcmc[0],
                                          h1_b_mcmc[0],h1_vel_mcmc[0],d2h_true,resolution,
                                          single_component_flux=False)/1e14


## Here's the big messy part where I determine the 1-sigma error bars on the
## reconstructed, intrinsic LyA flux. From my paper: "For each of the 9 parameters, 
## the best-fit values are taken as the 50th percentile (the median) of the marginalized 
## distributions, and 1-σ error bars as the 16th and 84th percentiles (shown as dashed 
## vertical lines in Figures 3 and 4). The best-fit reconstructed Lyα fluxes are determined 
## from the best-fit amplitude, FWHM, and velocity centroid parameters, and the 1-σ error bars
示例#5
0
        h1_b = {7[0]} +{7[1]} -{7[2]}
        h1_vel = {8[0]} +{8[1]} -{8[2]}
    
""".format( variables['vs_n']['best'], variables['am_n']['best'], variables['fw_n']['best'], 
           variables['vs_b']['best'], variables['am_b']['best'], variables['fw_b']['best'], 
           variables['h1_col']['best'], variables['h1_b']['best'], variables['h1_vel']['best'],
           variables['d2h']['best'] ) )
    
    print("Mean acceptance fraction: {0:.3f}"
                    .format(np.mean(sampler.acceptance_fraction)))
    print("should be between 0.25 and 0.5")
    
    
    ## best fit intrinsic profile
    lya_intrinsic_profile_mcmc,lya_intrinsic_flux_mcmc = lyapy.lya_intrinsic_profile_func(wave_to_fit,
         variables['vs_n']['best'][0],10**variables['am_n']['best'][0],variables['fw_n']['best'][0],
         variables['vs_b']['best'][0],10**variables['am_b']['best'][0],variables['fw_b']['best'][0],
         return_flux=True, single_component_flux=variables['am_b']['single_comp'])
    
    ## best fit attenuated profile
    model_best_fit = lyapy.damped_lya_profile(wave_to_fit,
         variables['vs_n']['best'][0],10**variables['am_n']['best'][0],variables['fw_n']['best'][0],
         variables['vs_b']['best'][0],10**variables['am_b']['best'][0],variables['fw_b']['best'][0],
         variables['h1_col']['best'][0], variables['h1_b']['best'][0],variables['h1_vel']['best'][0],
         variables['d2h']['best'][0],
         resolution,
         single_component_flux=variables['am_b']['single_comp'])/1.e14
    
    
    ## Here's the big messy part where I determine the 1-sigma error bars on the
    ## reconstructed, intrinsic LyA flux. From my paper: "For each of the 9 parameters, 
    ## the best-fit values are taken as the 50th percentile (the median) of the marginalized 
示例#6
0
    h1_b = {7[0]} +{7[1]} -{7[2]}
    h1_vel = {8[0]} +{8[1]} -{8[2]}

""".format(vs_n_mcmc, am_n_mcmc, fw_n_mcmc, vs_b_mcmc, am_b_mcmc, fw_b_mcmc,
           h1_col_mcmc, h1_b_mcmc, h1_vel_mcmc))

print("Mean acceptance fraction: {0:.3f}".format(
    np.mean(sampler.acceptance_fraction)))
print("should be between 0.25 and 0.5")

## best fit intrinsic profile
lya_intrinsic_profile_mcmc, lya_intrinsic_flux_mcmc = lyapy.lya_intrinsic_profile_func(
    wave_to_fit,
    vs_n_mcmc[0],
    10**am_n_mcmc[0],
    fw_n_mcmc[0],
    vs_b_mcmc[0],
    10**am_b_mcmc[0],
    fw_b_mcmc[0],
    return_flux=True)

## best fit attenuated profile
model_best_fit = lyapy.damped_lya_profile(wave_to_fit,
                                          vs_n_mcmc[0],
                                          10**am_n_mcmc[0],
                                          fw_n_mcmc[0],
                                          vs_b_mcmc[0],
                                          10**am_b_mcmc[0],
                                          fw_b_mcmc[0],
                                          h1_col_mcmc[0],
                                          h1_b_mcmc[0],
示例#7
0
sig1_contour = global_min + lyapy.delta_chi2(len(parameter_range),0.32)
sig2_contour = global_min + lyapy.delta_chi2(len(parameter_range),0.05)
sig3_contour = global_min + lyapy.delta_chi2(len(parameter_range),.003)

contour_levels = [sig1_contour]#,sig2_contour,sig3_contour]
contour_colors = ['red']#,'darkorange','gold']



## Reconstructing intrinsic LyA flux
model_best_fit = lyapy.damped_lya_profile(wave_to_fit,vs_n_final,am_n_final,fw_n_final,
                                          vs_b_final,am_b_final,fw_b_final,h1_col_final,
                                          h1_b_final,h1_vel_final,1.5e-5,resolution,
                                          single_component_flux=single_component)/1e14

lya_intrinsic_profile,lya_intrinsic_flux = lyapy.lya_intrinsic_profile_func(wave_to_fit,
         vs_n_final,am_n_final,fw_n_final,vs_b_final,am_b_final,fw_b_final,return_flux=True,single_component_flux=single_component)
    ##########################################


if not single_component:
  ## Print best fit parameters
  print ' '
  print 'BEST FIT PARAMETERS'
  print 'Reduced Chi-square = ' + str(global_min)
  print 'vs_n = ' + str(vs_n_final)
  print 'am_n = ' + str(am_n_final)
  print 'fw_n = ' + str(fw_n_final)
  print 'vs_b = ' + str(vs_b_final)
  print 'am_b = ' + str(am_b_final)
  print 'fw_b = ' + str(fw_b_final)
  print 'h1_col = ' + str(h1_col_final)