def config_tf(): from mCNN.queueGPU import queueGPU CUDA_rate = '0.25' ## config TF queueGPU(USER_MEM=3500, INTERVAL=60) # os.environ['CUDA_VISIBLE_DEVICES'] = CUDA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' if CUDA_rate != 'full': config = tf.ConfigProto() if float(CUDA_rate) < 0.1: config.gpu_options.allow_growth = True else: config.gpu_options.per_process_gpu_memory_fraction = float(CUDA_rate) set_session(tf.Session(config=config))
# objective = pearson_coeff * 2 + std # return {'loss': -objective, 'status': STATUS_OK} # # elif obj == 'val_mae': # validation_mae = np.amax(result.history['val_mean_absolute_error']) # print('Best validation mae of epoch:', validation_mae) # return {'loss': validation_mae, 'status': STATUS_OK} if __name__ == '__main__': import sys neighbor_obj, CUDA_rate = sys.argv[1:] ## config TF #os.environ['CUDA_VISIBLE_DEVICES'] = '0' from mCNN.queueGPU import queueGPU queueGPU() os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' if CUDA_rate != 'full': config = tf.ConfigProto() if float(CUDA_rate) < 0.1: config.gpu_options.allow_growth = True else: config.gpu_options.per_process_gpu_memory_fraction = float( CUDA_rate) set_session(tf.Session(config=config)) x_train, y_train, ddg_train, x_test, y_test, ddg_test, class_weights_dict, obj, kneighbor = data( neighbor_obj) model = Conv2DRegressorIn1(x_train, y_train, ddg_train, x_test, y_test, ddg_test, class_weights_dict, obj, kneighbor)
y=ddg_train, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=my_callbacks, validation_data=(x_val, ddg_val), shuffle=True, ) return network, result.history if __name__ == '__main__': from mCNN.queueGPU import queueGPU CUDA_rate = '0.2' ## config TF queueGPU(USER_MEM=3000, INTERVAL=60) # os.environ['CUDA_VISIBLE_DEVICES'] = CUDA os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' if CUDA_rate != 'full': config = tf.ConfigProto() if float(CUDA_rate) < 0.1: config.gpu_options.allow_growth = True else: config.gpu_options.per_process_gpu_memory_fraction = float( CUDA_rate) set_session(tf.Session(config=config)) # modeldir = '/dl/sry/mCNN/src/Network/deepddg/regressor/TrySimpleConv1D_CrossValid_%s'%time.strftime("%Y.%m.%d.%H.%M.%S", time.localtime()) modeldir = '/dl/sry/mCNN/src/Network/deepddg/regressor/%s_%s' % ( sys.argv[0][:-3], time.strftime("%Y.%m.%d.%H.%M.%S", time.localtime())) os.makedirs(modeldir, exist_ok=True)