from PIL import Image from matplotlib import cm from baseoption import BaseOptions from m_util import sdmkdir, convertMbandstoRGB, sdsaveim opt = BaseOptions().parse() opt.padding = 1000 opt.root = '/gpfs/projects/LynchGroup/' opt.raw_fold = opt.root + 'Train_all/raw/' opt.tif_fold = opt.root + 'Orthoed/' opt.training_fold = opt.root + 'Train_all/CROPPED/p1000/' opt.A = opt.training_fold + 'A/' opt.B = opt.training_fold + 'B/' opt.visdir = opt.root + 'Train_all/CROPPED/p1000/vis/' sdmkdir(opt.training_fold) sdmkdir(opt.A) sdmkdir(opt.B) sdmkdir(opt.visdir) def full_frame(width=None, height=None): matplotlib.rcParams['savefig.pad_inches'] = 0 figsize = None if width is None else (width, height) fig = plt.figure(figsize=figsize) ax = plt.axes([0, 0, 1, 1], frameon=False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.autoscale(tight=True) return fig
from PIL import Image from m_util import sdmkdir, convertMbandstoRGB, sdsaveim import pandas as pd from shutil import copyfile parser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter) opt = parser.parse_args() padding = 300 opt.root = '/gpfs/projects/LynchGroup/' opt.resdir = '/gpfs/projects/LynchGroup/Penguin_workstation/data/Penguins' + '/TEST_PTS_MASK_PADDING_' + str( padding) + '/' opt.A = opt.resdir + 'A/' opt.B = opt.resdir + 'B/' opt.tif_fold = opt.root + 'Orthoed/' sdmkdir(opt.resdir) sdmkdir(opt.A) sdmkdir(opt.B) opt.shape_dir = opt.root + '/Annotated_shapefiles_PTS/' files = [] for root, _, fnames in sorted(os.walk(opt.shape_dir)): for fname in fnames: if fname.endswith('tif'): files.append(fname) for file1 in files: indx = file1.find('__') file2 = file1[indx + 2:] print(file2) match = re.search(r'\d{2}\D{3}\d{8}', file2).group(0) date = '20' + match[0:2] + "%02d" % (time.strptime(
shape_dir = '/gpfs/projects/LynchGroup/Annotated_shapefiles/' opt.tif_fold = '/gpfs/projects/LynchGroup/Orthoed/' files = ['PAUL_IDs_Test.xlsx','CROZ_IDs_Test.xlsx', 'CatalogIDs_training_shapefiles.xlsx'] folds = ['Test/PAUL/','Test/CROZ/','Train_all/'] for id in range(0,3): file = opt.root+files[id] opt.fold = folds[id] opt.training_fold = opt.root + opt.fold+ '/padding_'+str(opt.padding)+'/' opt.A = opt.training_fold + 'A/' opt.B = opt.training_fold + 'B/' opt.ctifdir = opt.root + opt.fold+ '/padding_' +str(opt.padding)+ '/tif/' sdmkdir(opt.training_fold) sdmkdir(opt.A) sdmkdir(opt.B) sdmkdir(opt.ctifdir) #shape_dir= '/gpfs/projects/LynchGroup/Colony\ shapefiles\ from\ imagery/' anno = pd.read_excel(file,sheet_name=0) tif = anno['Filename'] shape = anno['Shapefile of guano'] for i in range(0,len(tif)): name= tif[i].encode('ascii','ignore') name = name.decode() if "-M" in name: gta= shape[i].encode('ascii','ignore') gta = gta.decode()