def test_set_pipeline_steps(): transf1 = Transf() transf2 = Transf() pipeline = Pipeline([('mock', transf1)]) assert pipeline.named_steps['mock'] is transf1 # Directly setting attr pipeline.steps = [('mock2', transf2)] assert 'mock' not in pipeline.named_steps assert pipeline.named_steps['mock2'] is transf2 assert [('mock2', transf2)] == pipeline.steps # Using set_params pipeline.set_params(steps=[('mock', transf1)]) assert [('mock', transf1)] == pipeline.steps # Using set_params to replace single step pipeline.set_params(mock=transf2) assert [('mock', transf2)] == pipeline.steps # With invalid data pipeline.set_params(steps=[('junk', ())]) with raises(TypeError): pipeline.fit([[1]], [1]) with raises(TypeError): pipeline.fit_transform([[1]], [1])
def test_pipeline_methods_preprocessing_svm(): # Test the various methods of the pipeline (preprocessing + svm). iris = load_iris() X = iris.data y = iris.target n_samples = X.shape[0] n_classes = len(np.unique(y)) scaler = StandardScaler() pca = PCA(n_components=2, svd_solver='randomized', whiten=True) clf = SVC(probability=True, random_state=0, decision_function_shape='ovr') for preprocessing in [scaler, pca]: pipe = Pipeline([('preprocess', preprocessing), ('svc', clf)]) pipe.fit(X, y) # check shapes of various prediction functions predict = pipe.predict(X) assert predict.shape == (n_samples,) proba = pipe.predict_proba(X) assert proba.shape == (n_samples, n_classes) log_proba = pipe.predict_log_proba(X) assert log_proba.shape == (n_samples, n_classes) decision_function = pipe.decision_function(X) assert decision_function.shape == (n_samples, n_classes) pipe.score(X, y)
def test_pipeline_sample_weight_unsupported(): # When sample_weight is None it shouldn't be passed X = np.array([[1, 2]]) pipe = Pipeline([('transf', Transf()), ('clf', Mult())]) pipe.fit(X, y=None) assert pipe.score(X) == 3 assert pipe.score(X, sample_weight=None) == 3 with raises(TypeError, match="unexpected keyword argument"): pipe.score(X, sample_weight=np.array([2, 3]))
def test_pipeline_sample_weight_supported(): # Pipeline should pass sample_weight X = np.array([[1, 2]]) pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())]) pipe.fit(X, y=None) assert pipe.score(X) == 3 assert pipe.score(X, y=None) == 3 assert pipe.score(X, y=None, sample_weight=None) == 3 assert pipe.score(X, sample_weight=np.array([2, 3])) == 8
def test_pipeline_fit_params(): # Test that the pipeline can take fit parameters pipe = Pipeline([('transf', Transf()), ('clf', FitParamT())]) pipe.fit(X=None, y=None, clf__should_succeed=True) # classifier should return True assert pipe.predict(None) # and transformer params should not be changed assert pipe.named_steps['transf'].a is None assert pipe.named_steps['transf'].b is None # invalid parameters should raise an error message with raises(TypeError, match="unexpected keyword argument"): pipe.fit(None, None, clf__bad=True)
def test_pipeline_memory_transformer(): iris = load_iris() X = iris.data y = iris.target cachedir = mkdtemp() try: memory = Memory(cachedir=cachedir, verbose=10) # Test with Transformer + SVC clf = SVC(probability=True, random_state=0) transf = DummyTransf() pipe = Pipeline([('transf', clone(transf)), ('svc', clf)]) cached_pipe = Pipeline([('transf', transf), ('svc', clf)], memory=memory) # Memoize the transformer at the first fit cached_pipe.fit(X, y) pipe.fit(X, y) # Get the time stamp of the tranformer in the cached pipeline expected_ts = cached_pipe.named_steps['transf'].timestamp_ # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert not hasattr(transf, 'means_') # Check that we are reading the cache while fitting # a second time cached_pipe.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts # Create a new pipeline with cloned estimators # Check that even changing the name step does not affect the cache hit clf_2 = SVC(probability=True, random_state=0) transf_2 = DummyTransf() cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)], memory=memory) cached_pipe_2.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe_2.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe_2.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe_2.named_steps['transf_2'].means_) assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts finally: shutil.rmtree(cachedir)
def test_pipeline_wrong_memory(): # Test that an error is raised when memory is not a string or a Memory # instance iris = load_iris() X = iris.data y = iris.target # Define memory as an integer memory = 1 cached_pipe = Pipeline([('transf', DummyTransf()), ('svc', SVC())], memory=memory) error_regex = ("'memory' should either be a string or a joblib.Memory" " instance, got 'memory=1' instead.") with raises(ValueError, match=error_regex): cached_pipe.fit(X, y)
def test_pipeline_methods_pca_svm(): # Test the various methods of the pipeline (pca + svm). iris = load_iris() X = iris.data y = iris.target # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA(svd_solver='full', n_components='mle', whiten=True) pipe = Pipeline([('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y)
def test_pipeline_methods_anova(): # Test the various methods of the pipeline (anova). iris = load_iris() X = iris.data y = iris.target # Test with Anova + LogisticRegression clf = LogisticRegression() filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y)
def test_pipeline_sample_transform(): # Test whether pipeline works with a sampler at the end. # Also test pipeline.sampler X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) rus = RandomUnderSampler(random_state=0) pca = PCA() pca2 = PCA() pipeline = Pipeline([('pca', pca), ('rus', rus), ('pca2', pca2)]) pipeline.fit(X, y).transform(X)
def test_pipeline_sample(): # Test whether pipeline works with a sampler at the end. # Also test pipeline.sampler X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) rus = RandomUnderSampler(random_state=0) pipeline = Pipeline([('rus', rus)]) # test transform and fit_transform: X_trans, y_trans = pipeline.fit(X, y).sample(X, y) X_trans2, y_trans2 = pipeline.fit_sample(X, y) X_trans3, y_trans3 = rus.fit_sample(X, y) assert_allclose(X_trans, X_trans2, rtol=R_TOL) assert_allclose(X_trans, X_trans3, rtol=R_TOL) assert_allclose(y_trans, y_trans2, rtol=R_TOL) assert_allclose(y_trans, y_trans3, rtol=R_TOL) pca = PCA() pipeline = Pipeline([('pca', PCA()), ('rus', rus)]) X_trans, y_trans = pipeline.fit(X, y).sample(X, y) X_pca = pca.fit_transform(X) X_trans2, y_trans2 = rus.fit_sample(X_pca, y) # We round the value near to zero. It seems that PCA has some issue # with that X_trans[np.bitwise_and(X_trans < R_TOL, X_trans > -R_TOL)] = 0 X_trans2[np.bitwise_and(X_trans2 < R_TOL, X_trans2 > -R_TOL)] = 0 assert_allclose(X_trans, X_trans2, rtol=R_TOL) assert_allclose(y_trans, y_trans2, rtol=R_TOL)
def test_pipeline_methods_anova_rus(): # Test the various methods of the pipeline (anova). X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) # Test with RandomUnderSampling + Anova + LogisticRegression clf = LogisticRegression() rus = RandomUnderSampler(random_state=0) filter1 = SelectKBest(f_classif, k=2) pipe = Pipeline([('rus', rus), ('anova', filter1), ('logistic', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y)
def test_pipeline_methods_rus_pca_svm(): # Test the various methods of the pipeline (pca + svm). X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) # Test with PCA + SVC clf = SVC(probability=True, random_state=0) pca = PCA() rus = RandomUnderSampler(random_state=0) pipe = Pipeline([('rus', rus), ('pca', pca), ('svc', clf)]) pipe.fit(X, y) pipe.predict(X) pipe.predict_proba(X) pipe.predict_log_proba(X) pipe.score(X, y)
def test_pipeline_transform(): # Test whether pipeline works with a transformer at the end. # Also test pipeline.transform and pipeline.inverse_transform iris = load_iris() X = iris.data pca = PCA(n_components=2, svd_solver='full') pipeline = Pipeline([('pca', pca)]) # test transform and fit_transform: X_trans = pipeline.fit(X).transform(X) X_trans2 = pipeline.fit_transform(X) X_trans3 = pca.fit_transform(X) assert_array_almost_equal(X_trans, X_trans2) assert_array_almost_equal(X_trans, X_trans3) X_back = pipeline.inverse_transform(X_trans) X_back2 = pca.inverse_transform(X_trans) assert_array_almost_equal(X_back, X_back2)
def test_pipeline_memory_sampler(): X, y = make_classification( n_classes=2, class_sep=2, weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0, n_features=20, n_clusters_per_class=1, n_samples=5000, random_state=0) cachedir = mkdtemp() try: memory = Memory(cachedir=cachedir, verbose=10) # Test with Transformer + SVC clf = SVC(probability=True, random_state=0) transf = DummySampler() pipe = Pipeline([('transf', clone(transf)), ('svc', clf)]) cached_pipe = Pipeline([('transf', transf), ('svc', clf)], memory=memory) # Memoize the transformer at the first fit cached_pipe.fit(X, y) pipe.fit(X, y) # Get the time stamp of the tranformer in the cached pipeline expected_ts = cached_pipe.named_steps['transf'].timestamp_ # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert not hasattr(transf, 'means_') # Check that we are reading the cache while fitting # a second time cached_pipe.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe.named_steps['transf'].means_) assert cached_pipe.named_steps['transf'].timestamp_ == expected_ts # Create a new pipeline with cloned estimators # Check that even changing the name step does not affect the cache hit clf_2 = SVC(probability=True, random_state=0) transf_2 = DummySampler() cached_pipe_2 = Pipeline([('transf_2', transf_2), ('svc', clf_2)], memory=memory) cached_pipe_2.fit(X, y) # Check that cached_pipe and pipe yield identical results assert_array_equal(pipe.predict(X), cached_pipe_2.predict(X)) assert_array_equal(pipe.predict_proba(X), cached_pipe_2.predict_proba(X)) assert_array_equal(pipe.predict_log_proba(X), cached_pipe_2.predict_log_proba(X)) assert_array_equal(pipe.score(X, y), cached_pipe_2.score(X, y)) assert_array_equal(pipe.named_steps['transf'].means_, cached_pipe_2.named_steps['transf_2'].means_) assert cached_pipe_2.named_steps['transf_2'].timestamp_ == expected_ts finally: shutil.rmtree(cachedir)
def test_set_pipeline_step_none(): # Test setting Pipeline steps to None X = np.array([[1]]) y = np.array([1]) mult2 = Mult(mult=2) mult3 = Mult(mult=3) mult5 = Mult(mult=5) def make(): return Pipeline([('m2', mult2), ('m3', mult3), ('last', mult5)]) pipeline = make() exp = 2 * 3 * 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) pipeline.set_params(m3=None) exp = 2 * 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) expected_params = {'steps': pipeline.steps, 'm2': mult2, 'm3': None, 'last': mult5, 'memory': None, 'm2__mult': 2, 'last__mult': 5} assert pipeline.get_params(deep=True) == expected_params pipeline.set_params(m2=None) exp = 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) # for other methods, ensure no AttributeErrors on None: other_methods = ['predict_proba', 'predict_log_proba', 'decision_function', 'transform', 'score'] for method in other_methods: getattr(pipeline, method)(X) pipeline.set_params(m2=mult2) exp = 2 * 5 assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) pipeline = make() pipeline.set_params(last=None) # mult2 and mult3 are active exp = 6 pipeline.fit(X, y) pipeline.transform(X) assert_array_equal([[exp]], pipeline.fit(X, y).transform(X)) assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal(X, pipeline.inverse_transform([[exp]])) with raises(AttributeError, match="has no attribute 'predict'"): getattr(pipeline, 'predict') # Check None step at construction time exp = 2 * 5 pipeline = Pipeline([('m2', mult2), ('m3', None), ('last', mult5)]) assert_array_equal([[exp]], pipeline.fit_transform(X, y)) assert_array_equal([exp], pipeline.fit(X).predict(X)) assert_array_equal(X, pipeline.inverse_transform([[exp]]))