def test_learning(self): ob_space = self.env.real_observation_space skill_space = self.env.skill_space ob_skill_space = self.env.observation_space ac_space = self.env.action_space ob_dim = ob_skill_space.shape[0] - 4 f_dim = ob_dim def discrim_f(x): return x pol_net = PolNet(ob_skill_space, ac_space) pol = GaussianPol(ob_skill_space, ac_space, pol_net) qf_net1 = QNet(ob_skill_space, ac_space) qf1 = DeterministicSAVfunc(ob_skill_space, ac_space, qf_net1) targ_qf_net1 = QNet(ob_skill_space, ac_space) targ_qf_net1.load_state_dict(qf_net1.state_dict()) targ_qf1 = DeterministicSAVfunc(ob_skill_space, ac_space, targ_qf_net1) qf_net2 = QNet(ob_skill_space, ac_space) qf2 = DeterministicSAVfunc(ob_skill_space, ac_space, qf_net2) targ_qf_net2 = QNet(ob_skill_space, ac_space) targ_qf_net2.load_state_dict(qf_net2.state_dict()) targ_qf2 = DeterministicSAVfunc(ob_skill_space, ac_space, targ_qf_net2) qfs = [qf1, qf2] targ_qfs = [targ_qf1, targ_qf2] log_alpha = nn.Parameter(torch.ones(())) high = np.array([np.finfo(np.float32).max]*f_dim) f_space = gym.spaces.Box(-high, high, dtype=np.float32) discrim_net = DiaynDiscrimNet( f_space, skill_space, h_size=100, discrim_f=discrim_f) discrim = DeterministicSVfunc(f_space, discrim_net) optim_pol = torch.optim.Adam(pol_net.parameters(), 1e-4) optim_qf1 = torch.optim.Adam(qf_net1.parameters(), 3e-4) optim_qf2 = torch.optim.Adam(qf_net2.parameters(), 3e-4) optim_qfs = [optim_qf1, optim_qf2] optim_alpha = torch.optim.Adam([log_alpha], 1e-4) optim_discrim = torch.optim.SGD(discrim.parameters(), lr=0.001, momentum=0.9) off_traj = Traj() sampler = EpiSampler(self.env, pol, num_parallel=1) epis = sampler.sample(pol, max_steps=200) on_traj = Traj() on_traj.add_epis(epis) on_traj = ef.add_next_obs(on_traj) on_traj = ef.compute_diayn_rews( on_traj, lambda x: diayn_sac.calc_rewards(x, 4, discrim)) on_traj.register_epis() off_traj.add_traj(on_traj) step = on_traj.num_step log_alpha = nn.Parameter(np.log(0.1)*torch.ones(())) # fix alpha result_dict = diayn_sac.train( off_traj, pol, qfs, targ_qfs, log_alpha, optim_pol, optim_qfs, optim_alpha, step, 128, 5e-3, 0.99, 1, discrim, 4, True) discrim_losses = diayn.train( discrim, optim_discrim, on_traj, 32, 100, 4) del sampler
discrim_total_step = [] # train loop while args.max_episodes > total_epi: print('totalepi:', total_epi, 'mean_rew', mean_rew) # sample trajectories with measure('sample'): epis = sampler.sample(pol, max_steps=args.max_steps_per_iter) with measure('train'): on_traj = Traj() on_traj.add_epis(epis) on_traj = ef.add_next_obs(on_traj) on_traj = ef.compute_diayn_rews( on_traj, lambda x: diayn_sac.calc_rewards(x, args.num_skill, discrim)) on_traj.register_epis() off_traj.add_traj(on_traj) total_epi += on_traj.num_epi step = on_traj.num_step total_step += step log_alpha = nn.Parameter( np.log(0.1)*torch.ones((), device=device)) # fix alpha result_dict = diayn_sac.train( off_traj, pol, qfs, targ_qfs, log_alpha, optim_pol, optim_qfs, optim_alpha, step, args.batch_size, args.tau, args.gamma, args.sampling,