示例#1
0
                startDateTuple = xlrd.xldate.xldate_as_tuple(r[4].value,workbook.datemode)
                endDateTuple = xlrd.xldate.xldate_as_tuple(r[5].value,workbook.datemode)
                timeZone = r[6].value
                sensorType = r[7].value
                condition = r[8].value
                climate = r[9].value
                coord = (r[10].value,r[11].value)
                PERdict[serial] = [site,location,project,startDateTuple,endDateTuple,
                                   timeZone,sensorType,condition,climate,coord]
    except Exception as e:
        print e
        raise Exception("Cannot find/open 'PER Logger Data.xlsx' in the parent directory, or the file format is faulty")
    
    #Create madgetech objects from all valid .csv files in folder. create a dictionary of these objects with serial as key
    #eliminate sensors that do not have a listed gps coordinate and csv files that are not for TOW sensors.
    mts = mt2.mt2folder(r'..\2 TOW Sensor Analysis\_raw')
    mtdict = dict([(mt.serial,mt) for mt in mts if PERdict[mt.serial][9]!=('','') and PERdict[mt.serial][6]=='TOW'])
    keys = sorted(mtdict.keys(),key = lambda x:PERdict[x][0])

    #create lists for the cross site Q4 plots
    overallPlotT = []
    overallQ4inc = []
    overallQ4time = []

    #create TOW data processor
    TOWproc = TOWprocessor()

    with open('TOW bucketing.csv','wb') as csvfile:
        csvwrite = csv.writer(csvfile,delimiter = ',')
        csvwrite.writerow(['Site','Location','minimun Voltage','maximum Voltage','Readings','Mean','Q1','Q2+Q3','Q4']+['Bucket ' + str(n) for n in range(bucketCount)])
        for key in keys:
示例#2
0
import numpy as np
from matplotlib.ticker import MaxNLocator
from pylab import get_cmap
from madgetech import madgetech_2 as mt2
from madgetech.madgetech_2_rht import rhtProcessor
from perdb import perdb
from math import sqrt

try:
    #load meta data into a dictionary
    PERdict = perdb.loadPERdict()
    invPERdict = perdb.inversePERdict()
    
    #Create madgetech objects from all valid .csv files in folder. create a dictionary of these objects with serial as key
    #eliminate sensors that do not have a listed gps coordinate and csv files that are not for corrosion sensors.
    mts = mt2.mt2folder(r'..\3 RHT and TC Sensor Analysis\_raw')
    mtdict = dict([(mt.serial,mt) for mt in mts if PERdict[mt.serial][6]=='RHT'])
    keys = sorted(mtdict.keys())

    #create rht data processor
    rhtproc = rhtProcessor()

    tempAggregates = []
    rhAggregates = []

    for key in keys:
        mt = mtdict[key]
        mt.loaddata()
        secondInterval = mt.timeinterval.total_seconds()
        site,location,project,startDateTuple,endDateTuple,timeZone,sensorType,condition,climate,coord = PERdict[key]
        
示例#3
0
                condition = r[8].value
                climate = r[9].value
                coord = (r[10].value, r[11].value)
                PERdict[serial] = [
                    site, location, project, startDateTuple, endDateTuple,
                    timeZone, sensorType, condition, climate, coord
                ]
    except Exception as e:
        print e
        raise Exception(
            "Cannot find/open 'PER Logger Data.xlsx' in the parent directory, or the file format is faulty"
        )

    #Create madgetech objects from all valid .csv files in folder. create a dictionary of these objects with serial as key
    #eliminate sensors that do not have a listed gps coordinate and csv files that are not for TOW sensors.
    mts = mt2.mt2folder(r'..\2 TOW Sensor Analysis\_raw')
    mtdict = dict([
        (mt.serial, mt) for mt in mts
        if PERdict[mt.serial][9] != ('', '') and PERdict[mt.serial][6] == 'TOW'
    ])
    keys = sorted(mtdict.keys(), key=lambda x: PERdict[x][0])

    #create lists for the cross site Q4 plots
    overallPlotT = []
    overallQ4inc = []
    overallQ4time = []

    #create TOW data processor
    TOWproc = TOWprocessor()

    with open('TOW bucketing.csv', 'wb') as csvfile:
示例#4
0
import matplotlib.pyplot as plt
from matplotlib.ticker import MaxNLocator
from pylab import get_cmap
from googleEarth import plotGoogleColorMap as pltGE
from perdb import perdb
from madgetech import madgetech_2 as mt2
from madgetech.madgetech_2_cs import CorrosionSensorProcessor

try:
    #load meta data into a dictionary
    PERdict = perdb.loadPERdict()
    invPERdict = perdb.inversePERdict()
    
    #Create madgetech objects from all valid .csv files in folder. create a dictionary of these objects with serial as key
    #eliminate sensors that do not have a listed gps coordinate and csv files that are not for corrosion sensors.
    mts = mt2.mt2folder(r'..\1 Corrosion Sensor Analysis\_raw')
    mtdict = dict([(mt.serial,mt) for mt in mts if PERdict[mt.serial][9]!=('','') and PERdict[mt.serial][6]=='CS'])
    keys = sorted(mtdict.keys())

    #create lists for the cross site cumulative corrosion index and the Google Earth color plot
    overallPlotT=[]
    overallPlotY = []
    googleEarthList = []
    
    #create a corrosion sensor data processing object (Contains functions for processing corrosion sensor data)
    csProc = CorrosionSensorProcessor(useDefaultInput = True)
    
    #Iterate through serial numbers
    for key in keys:
        try:
            #load data from the mt object and truncate data to the dates listed in the PER meta data excel spreadsheet
示例#5
0
import numpy as np
from matplotlib.ticker import MaxNLocator
from pylab import get_cmap
from madgetech import madgetech_2 as mt2
from madgetech.madgetech_2_rht import rhtProcessor
from perdb import perdb
from math import sqrt

try:
    #load meta data into a dictionary
    PERdict = perdb.loadPERdict()
    invPERdict = perdb.inversePERdict()

    #Create madgetech objects from all valid .csv files in folder. create a dictionary of these objects with serial as key
    #eliminate sensors that do not have a listed gps coordinate and csv files that are not for corrosion sensors.
    mts = mt2.mt2folder(r'..\3 RHT and TC Sensor Analysis\_raw')
    mtdict = dict([(mt.serial, mt) for mt in mts
                   if PERdict[mt.serial][6] == 'RHT'])
    keys = sorted(mtdict.keys())

    #create rht data processor
    rhtproc = rhtProcessor()

    tempAggregates = []
    rhAggregates = []

    for key in keys:
        mt = mtdict[key]
        mt.loaddata()
        secondInterval = mt.timeinterval.total_seconds()
        site, location, project, startDateTuple, endDateTuple, timeZone, sensorType, condition, climate, coord = PERdict[