示例#1
0
def test_coil_integrity():
    numbers = np.load('rand.npy')
    numbers[0:50, 0] = 0
    numbers[51:200, 2] = 0
    numbers[100:200, 3] = 0
    r1x = m1.field_axial(numbers[:, 0], numbers[:, 1], numbers[:, 2],
                         numbers[:, 3])
    r1r = m1.field_radial(numbers[:, 0], numbers[:, 1], numbers[:, 2],
                          numbers[:, 3])
    r2x = [m2.field_axial(*line) for line in numbers]
    r2r = [m2.field_radial(*line) for line in numbers]

    assert np.allclose(r1x, r2x)
    assert np.allclose(r1r, r2r)
    assert np.isclose(m1.field_axial(2.2, 5, 3, 1), 1.7293349e-07)
    assert np.isclose(m1.field_axial(2.2, 5, 3, -1), 1.7293349e-07)
示例#2
0
文件: core.py 项目: sq-meng/coilcalc
 def _run_sp_legacy(self):
     """
     Single-threaded solver without vectorization, slow for larger meshes or magnets.
     :return: None
     """
     if self.done:
         return
     x_mesh, y_mesh = self._mesh.get_matrix()
     x_field = np.zeros(x_mesh.shape)
     y_field = np.zeros(x_mesh.shape)
     for i in range(x_mesh.shape[0]):
         for j in range(x_mesh.shape[1]):
             for source in self._sources:
                 loops = source.get_loop_list()
                 for loop in loops:
                     xp = x_mesh[i][j]
                     yp = y_mesh[i][j]
                     a = loop[1] / 1000
                     x = (xp - loop[0]) / 1000
                     r = yp / 1000
                     current = loop[2]
                     bx = loop_calculator.field_axial(current, a, x, r)
                     br = loop_calculator.field_radial(current, a, x, r)
                     x_field[i][j] += bx
                     y_field[i][j] += br
     self.done = True
     self._x_field = x_field
     self._y_field = y_field
     self._x_field_interpolator, self._y_field_interpolator = self._make_field_interpolator(
     )
     self._center_field = self.calculate_center_field()
示例#3
0
文件: core.py 项目: sq-meng/coilcalc
 def b_field(self, xp, yp):
     """
     Calculate the field at [xp, yp]
     :param xp: x coords, in mm.
     :param yp: y coords, in mm.
     :return: Field in Tesla.
     """
     loops = self.get_loop_list()
     a = loops[:, 1] / 1000
     x = (xp - loops[:, 0]) / 1000
     r = yp / 1000
     current = loops[:, 2]
     bx = np.sum(loop_calculator.field_axial(current, a, x, r))
     br = np.sum(loop_calculator.field_radial(current, a, x, r))
     return bx, br
示例#4
0
文件: core.py 项目: sq-meng/coilcalc
 def _mp_process_run(ij_list, x_mesh, y_mesh, loop_list):
     x_field = np.zeros(x_mesh.shape)
     y_field = np.zeros(x_mesh.shape)
     loops = np.asarray(loop_list)
     for i, j in ij_list:
         xp = x_mesh[i][j]
         yp = y_mesh[i][j]
         a = loops[:, 1] / 1000
         x = (xp - loops[:, 0]) / 1000
         r = yp / 1000
         current = loops[:, 2]
         bx = loop_calculator.field_axial(current, a, x, r)
         br = loop_calculator.field_radial(current, a, x, r)
         x_field[i][j] += np.sum(bx)
         y_field[i][j] += np.sum(br)
     return x_field, y_field
示例#5
0
文件: core.py 项目: sq-meng/coilcalc
 def b_field_vec(self, x_mesh, y_mesh):
     """
     Calculates field on a (M, N) 2-D meshgrid in a vectorized manner.
     Optional: if not present will fall back to b_field method.
     :param x_mesh: (M, N) array, usually from np.meshgrid
     :param y_mesh: (M, N) array, usually from np.meshgrid
     :return: ((M, N), (M, N)) arrays of x and y fields.
     """
     loops = self.get_loop_list()
     ones_xy = np.ones(x_mesh.shape)
     ones_z = np.ones(loops.shape[0])
     a = ones_xy[..., None] * loops[:, 1] / 1000
     x = (x_mesh[..., None] * ones_z -
          ones_xy[..., None] * loops[:, 0]) / 1000
     r = y_mesh[..., None] * ones_z / 1000
     current = ones_xy[..., None] * loops[:, 2]
     bx_mesh = np.sum(loop_calculator.field_axial(current, a, x, r), axis=2)
     by_mesh = np.sum(loop_calculator.field_radial(current, a, x, r),
                      axis=2)
     return bx_mesh, by_mesh