def testDynamicRnnTrainingLoop(self): graph = basic_rnn_train.make_graph( sequence_example_file=self.sequence_example_file) metrics = list(basic_rnn_train.training_loop( graph, self.train_dir, num_training_steps=5, summary_frequency=1)) for metric in metrics: self.assertTrue(metric['loss'] >= 0) self.assertTrue(metric['accuracy'] >= 0)
def testEvalLoop(self): train_graph = basic_rnn_train.make_graph( sequence_example_file=self.sequence_example_file) list(basic_rnn_train.training_loop( train_graph, self.eval_dir, num_training_steps=5, summary_frequency=1)) eval_graph = basic_rnn_train.make_graph( sequence_example_file=self.sequence_example_file) metric = basic_rnn_train.eval_loop( eval_graph, self.eval_dir, self.eval_dir, num_training_steps=5, summary_frequency=1).next() self.assertTrue('loss' in metric) self.assertTrue('log_perplexity' in metric) self.assertTrue('accuracy' in metric)