示例#1
0
def discriminator_fn_specgram(images, **kwargs):
  """Builds discriminator network."""
  shape = images.shape
  normalizer = data_normalizer.registry[kwargs['data_normalizer']](kwargs)
  images = normalizer.normalize_op(images)
  images.set_shape(shape)
  logits, end_points = networks.discriminator(
      images,
      kwargs['progress'],
      lambda block_id: _num_filters_fn(block_id, **kwargs),
      kwargs['resolution_schedule'],
      num_blocks=kwargs['num_blocks'],
      kernel_size=kwargs['kernel_size'],
      simple_arch=kwargs['simple_arch'])
  with tf.variable_scope('discriminator_cond'):
    x = tf.contrib.layers.flatten(end_points['last_conv'])
    end_points['classification_logits'] = layers.custom_dense(
        x=x, units=kwargs['num_tokens'], scope='classification_logits')
  return logits, end_points
示例#2
0
def discriminator_fn_specgram(images, **kwargs):
    """Builds discriminator network."""
    shape = images.shape
    normalizer = data_normalizer.registry[kwargs['data_normalizer']](kwargs)
    images = normalizer.normalize_op(images)
    images.set_shape(shape)
    logits, end_points = networks.discriminator(
        images,
        kwargs['progress'],
        lambda block_id: _num_filters_fn(block_id, **kwargs),
        kwargs['resolution_schedule'],
        num_blocks=kwargs['num_blocks'],
        kernel_size=kwargs['kernel_size'],
        simple_arch=kwargs['simple_arch'])
    with tf.variable_scope('discriminator_cond'):
        x = contrib_layers.flatten(end_points['last_conv'])
        end_points['classification_logits'] = layers.custom_dense(
            x=x, units=kwargs['num_tokens'], scope='classification_logits')
    return logits, end_points