def generator_fn_specgram(inputs, **kwargs): """Builds generator network.""" # inputs = (noises, one_hot_labels) with tf.variable_scope('generator_cond'): z = tf.concat(inputs, axis=1) if kwargs['to_rgb_activation'] == 'tanh': to_rgb_activation = tf.tanh elif kwargs['to_rgb_activation'] == 'linear': to_rgb_activation = lambda x: x fake_images, end_points = networks.generator( z, kwargs['progress'], lambda block_id: _num_filters_fn(block_id, **kwargs), kwargs['resolution_schedule'], num_blocks=kwargs['num_blocks'], kernel_size=kwargs['kernel_size'], colors=2, to_rgb_activation=to_rgb_activation, simple_arch=kwargs['simple_arch']) shape = fake_images.shape normalizer = data_normalizer.registry[kwargs['data_normalizer']](kwargs) fake_images = normalizer.denormalize_op(fake_images) fake_images.set_shape(shape) return fake_images, end_points