示例#1
0
def main(unused_argv):
    del unused_argv

    # Load Config
    config_name = FLAGS.config
    config_module = importlib.import_module(configs_module_prefix +
                                            '.%s' % config_name)
    config = config_module.config
    model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
    batch_size = config['batch_size']

    # Load dataset
    dataset = common.load_dataset(config)
    save_path = dataset.save_path
    train_data = dataset.train_data
    attr_train = dataset.attr_train
    eval_data = dataset.eval_data
    attr_eval = dataset.attr_eval

    # Make the directory
    save_dir = os.path.join(save_path, model_uid)
    best_dir = os.path.join(save_dir, 'best')
    tf.gfile.MakeDirs(save_dir)
    tf.gfile.MakeDirs(best_dir)
    tf.logging.info('Save Dir: %s', save_dir)

    np.random.seed(FLAGS.random_seed)
    # We use `N` in variable name to emphasis its being the Number of something.
    N_train = train_data.shape[0]  # pylint:disable=invalid-name
    N_eval = eval_data.shape[0]  # pylint:disable=invalid-name

    # Load Model
    tf.reset_default_graph()
    sess = tf.Session()

    m = model_dataspace.Model(config, name=model_uid)
    _ = m()  # noqa

    # Create summaries
    tf.summary.scalar('Train_Loss', m.vae_loss)
    tf.summary.scalar('Mean_Recon_LL', m.mean_recons)
    tf.summary.scalar('Mean_KL', m.mean_KL)
    scalar_summaries = tf.summary.merge_all()

    x_mean_, x_ = m.x_mean, m.x
    if common.dataset_is_mnist_family(config['dataset']):
        x_mean_ = tf.reshape(x_mean_, [-1, MNIST_SIZE, MNIST_SIZE, 1])
        x_ = tf.reshape(x_, [-1, MNIST_SIZE, MNIST_SIZE, 1])

    x_mean_summary = tf.summary.image('Reconstruction',
                                      nn.tf_batch_image(x_mean_),
                                      max_outputs=1)
    x_summary = tf.summary.image('Original',
                                 nn.tf_batch_image(x_),
                                 max_outputs=1)
    sample_summary = tf.summary.image('Sample',
                                      nn.tf_batch_image(x_mean_),
                                      max_outputs=1)
    # Summary writers
    train_writer = tf.summary.FileWriter(save_dir + '/vae_train', sess.graph)
    eval_writer = tf.summary.FileWriter(save_dir + '/vae_eval', sess.graph)

    # Initialize
    sess.run(tf.global_variables_initializer())

    i_start = 0
    running_N_eval = 30  # pylint:disable=invalid-name
    traces = {
        'i': [],
        'i_pred': [],
        'loss': [],
        'loss_eval': [],
    }

    best_eval_loss = np.inf
    vae_lr_ = np.logspace(np.log10(FLAGS.lr), np.log10(1e-6), FLAGS.n_iters)

    # Train the VAE
    for i in range(i_start, FLAGS.n_iters):
        start = (i * batch_size) % N_train
        end = start + batch_size
        batch = train_data[start:end]
        labels = attr_train[start:end]

        # train op
        res = sess.run([
            m.train_vae, m.vae_loss, m.mean_recons, m.mean_KL, scalar_summaries
        ], {
            m.x: batch,
            m.vae_lr: vae_lr_[i],
            m.labels: labels,
        })
        tf.logging.info('Iter: %d, Loss: %d', i, res[1])
        train_writer.add_summary(res[-1], i)

        if i % FLAGS.n_iters_per_eval == 0:
            # write training reconstructions
            if batch.shape[0] == batch_size:
                res = sess.run([x_summary, x_mean_summary], {
                    m.x: batch,
                    m.labels: labels,
                })
                train_writer.add_summary(res[0], i)
                train_writer.add_summary(res[1], i)

            # write sample reconstructions
            prior_sample = sess.run(m.prior_sample)
            res = sess.run([sample_summary], {
                m.q_z_sample: prior_sample,
                m.labels: labels,
            })
            train_writer.add_summary(res[0], i)

            # write eval summaries
            start = (i * batch_size) % N_eval
            end = start + batch_size
            batch = eval_data[start:end]
            labels = attr_eval[start:end]
            if batch.shape[0] == batch_size:
                res_eval = sess.run([
                    m.vae_loss, m.mean_recons, m.mean_KL, scalar_summaries,
                    x_summary, x_mean_summary
                ], {
                    m.x: batch,
                    m.labels: labels,
                })
                traces['loss_eval'].append(res_eval[0])
                eval_writer.add_summary(res_eval[-3], i)
                eval_writer.add_summary(res_eval[-2], i)
                eval_writer.add_summary(res_eval[-1], i)

        if i % FLAGS.n_iters_per_save == 0:
            smoothed_eval_loss = np.mean(traces['loss_eval'][-running_N_eval:])
            if smoothed_eval_loss < best_eval_loss:
                # Save the best model
                best_eval_loss = smoothed_eval_loss
                save_name = os.path.join(best_dir,
                                         'vae_best_%s.ckpt' % model_uid)
                tf.logging.info('SAVING BEST! %s Iter: %d', save_name, i)
                m.vae_saver.save(sess, save_name)
                with tf.gfile.Open(
                        os.path.join(best_dir, 'best_ckpt_iters.txt'),
                        'w') as f:
                    f.write('%d' % i)
示例#2
0
def main(unused_argv):
  del unused_argv

  # Load Config
  config_name = FLAGS.config
  config_module = importlib.import_module(configs_module_prefix +
                                          '.%s' % config_name)
  config = config_module.config
  model_uid = common.get_model_uid(config_name, FLAGS.exp_uid)
  batch_size = config['batch_size']

  # Load dataset
  dataset = common.load_dataset(config)
  save_path = dataset.save_path
  train_data = dataset.train_data
  attr_train = dataset.attr_train
  eval_data = dataset.eval_data
  attr_eval = dataset.attr_eval

  # Make the directory
  save_dir = os.path.join(save_path, model_uid)
  best_dir = os.path.join(save_dir, 'best')
  tf.gfile.MakeDirs(save_dir)
  tf.gfile.MakeDirs(best_dir)
  tf.logging.info('Save Dir: %s', save_dir)

  np.random.seed(FLAGS.random_seed)
  # We use `N` in variable name to emphasis its being the Number of something.
  N_train = train_data.shape[0]  # pylint:disable=invalid-name
  N_eval = eval_data.shape[0]  # pylint:disable=invalid-name

  # Load Model
  tf.reset_default_graph()
  sess = tf.Session()

  m = model_dataspace.Model(config, name=model_uid)
  _ = m()  # noqa

  # Create summaries
  tf.summary.scalar('Train_Loss', m.vae_loss)
  tf.summary.scalar('Mean_Recon_LL', m.mean_recons)
  tf.summary.scalar('Mean_KL', m.mean_KL)
  scalar_summaries = tf.summary.merge_all()

  x_mean_, x_ = m.x_mean, m.x
  if common.dataset_is_mnist_family(config['dataset']):
    x_mean_ = tf.reshape(x_mean_, [-1, MNIST_SIZE, MNIST_SIZE, 1])
    x_ = tf.reshape(x_, [-1, MNIST_SIZE, MNIST_SIZE, 1])

  x_mean_summary = tf.summary.image(
      'Reconstruction', nn.tf_batch_image(x_mean_), max_outputs=1)
  x_summary = tf.summary.image('Original', nn.tf_batch_image(x_), max_outputs=1)
  sample_summary = tf.summary.image(
      'Sample', nn.tf_batch_image(x_mean_), max_outputs=1)
  # Summary writers
  train_writer = tf.summary.FileWriter(save_dir + '/vae_train', sess.graph)
  eval_writer = tf.summary.FileWriter(save_dir + '/vae_eval', sess.graph)

  # Initialize
  sess.run(tf.global_variables_initializer())

  i_start = 0
  running_N_eval = 30  # pylint:disable=invalid-name
  traces = {
      'i': [],
      'i_pred': [],
      'loss': [],
      'loss_eval': [],
  }

  best_eval_loss = np.inf
  vae_lr_ = np.logspace(np.log10(FLAGS.lr), np.log10(1e-6), FLAGS.n_iters)

  # Train the VAE
  for i in range(i_start, FLAGS.n_iters):
    start = (i * batch_size) % N_train
    end = start + batch_size
    batch = train_data[start:end]
    labels = attr_train[start:end]

    # train op
    res = sess.run(
        [m.train_vae, m.vae_loss, m.mean_recons, m.mean_KL, scalar_summaries], {
            m.x: batch,
            m.vae_lr: vae_lr_[i],
            m.labels: labels,
        })
    tf.logging.info('Iter: %d, Loss: %d', i, res[1])
    train_writer.add_summary(res[-1], i)

    if i % FLAGS.n_iters_per_eval == 0:
      # write training reconstructions
      if batch.shape[0] == batch_size:
        res = sess.run([x_summary, x_mean_summary], {
            m.x: batch,
            m.labels: labels,
        })
        train_writer.add_summary(res[0], i)
        train_writer.add_summary(res[1], i)

      # write sample reconstructions
      prior_sample = sess.run(m.prior_sample)
      res = sess.run([sample_summary], {
          m.q_z_sample: prior_sample,
          m.labels: labels,
      })
      train_writer.add_summary(res[0], i)

      # write eval summaries
      start = (i * batch_size) % N_eval
      end = start + batch_size
      batch = eval_data[start:end]
      labels = attr_eval[start:end]
      if batch.shape[0] == batch_size:
        res_eval = sess.run([
            m.vae_loss, m.mean_recons, m.mean_KL, scalar_summaries, x_summary,
            x_mean_summary
        ], {
            m.x: batch,
            m.labels: labels,
        })
        traces['loss_eval'].append(res_eval[0])
        eval_writer.add_summary(res_eval[-3], i)
        eval_writer.add_summary(res_eval[-2], i)
        eval_writer.add_summary(res_eval[-1], i)

    if i % FLAGS.n_iters_per_save == 0:
      smoothed_eval_loss = np.mean(traces['loss_eval'][-running_N_eval:])
      if smoothed_eval_loss < best_eval_loss:
        # Save the best model
        best_eval_loss = smoothed_eval_loss
        save_name = os.path.join(best_dir, 'vae_best_%s.ckpt' % model_uid)
        tf.logging.info('SAVING BEST! %s Iter: %d', save_name, i)
        m.vae_saver.save(sess, save_name)
        with tf.gfile.Open(os.path.join(best_dir, 'best_ckpt_iters.txt'),
                           'w') as f:
          f.write('%d' % i)