def run(hparams, run_dir): """Run train/eval/test.""" train_dir = os.path.join(run_dir, 'train') if FLAGS.mode == 'eval': eval_dir = os.path.join(run_dir, 'eval') if FLAGS.eval_dir: eval_dir = os.path.join(eval_dir, FLAGS.eval_dir) train_util.evaluate( train_dir=train_dir, eval_dir=eval_dir, examples_path=FLAGS.examples_path, num_batches=FLAGS.eval_num_batches, hparams=hparams) elif FLAGS.mode == 'test': checkpoint_path = (os.path.expanduser(FLAGS.checkpoint_path) if FLAGS.checkpoint_path else tf.train.latest_checkpoint(train_dir)) tf.logging.info('Testing with checkpoint: %s', checkpoint_path) test_dir = os.path.join(run_dir, 'test') train_util.test( checkpoint_path=checkpoint_path, test_dir=test_dir, examples_path=FLAGS.examples_path, num_batches=FLAGS.eval_num_batches, hparams=hparams) elif FLAGS.mode == 'train': train_util.train( train_dir=train_dir, examples_path=FLAGS.examples_path, hparams=hparams, checkpoints_to_keep=FLAGS.checkpoints_to_keep, num_steps=FLAGS.num_steps) else: raise ValueError('Invalid mode: {}'.format(FLAGS.mode))
def run(hparams, run_dir): """Run train/eval/test.""" train_dir = os.path.join(run_dir, 'train') if FLAGS.mode == 'eval': eval_dir = os.path.join(run_dir, 'eval') if FLAGS.eval_dir: eval_dir = os.path.join(eval_dir, FLAGS.eval_dir) train_util.evaluate(train_dir=train_dir, eval_dir=eval_dir, examples_path=FLAGS.examples_path, num_batches=FLAGS.eval_num_batches, hparams=hparams) elif FLAGS.mode == 'test': checkpoint_path = (os.path.expanduser(FLAGS.checkpoint_path) if FLAGS.checkpoint_path else tf.train.latest_checkpoint(train_dir)) tf.logging.info('Testing with checkpoint: %s', checkpoint_path) test_dir = os.path.join(run_dir, 'test') train_util.test(checkpoint_path=checkpoint_path, test_dir=test_dir, examples_path=FLAGS.examples_path, num_batches=FLAGS.eval_num_batches, hparams=hparams) elif FLAGS.mode == 'train': train_util.train(train_dir=train_dir, examples_path=FLAGS.examples_path, hparams=hparams, checkpoints_to_keep=FLAGS.checkpoints_to_keep, num_steps=FLAGS.num_steps) else: raise ValueError('Invalid mode: {}'.format(FLAGS.mode))
def run(hparams, run_dir): """Run train/eval/test.""" train_dir = os.path.join(run_dir, 'train') if FLAGS.mode == 'eval': eval_dir = os.path.join(run_dir, 'eval') if FLAGS.eval_dir: eval_dir = os.path.join(eval_dir, FLAGS.eval_dir) train_util.evaluate( train_dir=train_dir, eval_dir=eval_dir, examples_path=FLAGS.examples_path, num_batches=FLAGS.eval_num_batches, hparams=hparams, master=FLAGS.master) elif FLAGS.mode == 'test': checkpoint_path = tf.train.latest_checkpoint(train_dir) if FLAGS.checkpoint_path: checkpoint_path = os.path.expanduser(FLAGS.checkpoint_path) tf.logging.info('Testing with checkpoint: %s', checkpoint_path) test_dir = os.path.join(run_dir, 'test') train_util.test( checkpoint_path=checkpoint_path, test_dir=test_dir, examples_path=FLAGS.examples_path, num_batches=FLAGS.eval_num_batches, hparams=hparams, master=FLAGS.master) elif FLAGS.mode == 'train': train_util.train( train_dir=train_dir, examples_path=FLAGS.examples_path, hparams=hparams, checkpoints_to_keep=FLAGS.checkpoints_to_keep, num_steps=FLAGS.num_steps, master=FLAGS.master, task=FLAGS.ps_task, num_ps_tasks=FLAGS.num_ps_tasks)
def run(hparams, run_dir): """Run train/eval/test.""" train_dir = os.path.join(run_dir, 'train') if FLAGS.mode == 'eval': eval_dir = os.path.join(run_dir, 'eval') if FLAGS.eval_dir: eval_dir = os.path.join(eval_dir, FLAGS.eval_dir) train_util.evaluate(train_dir=train_dir, eval_dir=eval_dir, examples_path=FLAGS.examples_path, num_batches=FLAGS.eval_num_batches, hparams=hparams, master=FLAGS.master) elif FLAGS.mode == 'test': checkpoint_path = tf.train.latest_checkpoint(train_dir) if FLAGS.checkpoint_path: checkpoint_path = os.path.expanduser(FLAGS.checkpoint_path) tf.logging.info('Testing with checkpoint: %s', checkpoint_path) test_dir = os.path.join(run_dir, 'test') train_util.test(checkpoint_path=checkpoint_path, test_dir=test_dir, examples_path=FLAGS.examples_path, num_batches=FLAGS.eval_num_batches, hparams=hparams, master=FLAGS.master) elif FLAGS.mode == 'train': train_util.train(train_dir=train_dir, examples_path=FLAGS.examples_path, hparams=hparams, checkpoints_to_keep=FLAGS.checkpoints_to_keep, num_steps=FLAGS.num_steps, master=FLAGS.master, task=FLAGS.ps_task, num_ps_tasks=FLAGS.num_ps_tasks)