def setup_images(path=None, series=None, offset=None, size=None, proc_mode=None, allow_import=True): """Sets up an image and all associated images and metadata. Paths for related files such as registered images will generally be constructed from ``path``. If :attr:`config.prefix` is set, it will be used in place of ``path`` for registered labels. Args: path (str): Path to image from which MagellanMapper-style paths will be generated. series (int): Image series number; defaults to None. offset (List[int]): Sub-image offset given in z,y,x; defaults to None. size (List[int]): Sub-image shape given in z,y,x; defaults to None. proc_mode (str): Processing mode, which should be a key in :class:`config.ProcessTypes`, case-insensitive; defaults to None. allow_import (bool): True to allow importing the image if it cannot be loaded; defaults to True. """ def add_metadata(): # override metadata set from command-line metadata args if available md = { config.MetaKeys.RESOLUTIONS: config.meta_dict[config.MetaKeys.RESOLUTIONS], config.MetaKeys.MAGNIFICATION: config.meta_dict[config.MetaKeys.MAGNIFICATION], config.MetaKeys.ZOOM: config.meta_dict[config.MetaKeys.ZOOM], config.MetaKeys.SHAPE: config.meta_dict[config.MetaKeys.SHAPE], config.MetaKeys.DTYPE: config.meta_dict[config.MetaKeys.DTYPE], } for key, val in md.items(): if val is not None: # explicitly set metadata takes precedence over extracted vals import_md[key] = val # LOAD MAIN IMAGE # reset image5d config.image5d = None config.image5d_is_roi = False load_subimage = offset is not None and size is not None config.resolutions = None # reset label images config.labels_img = None config.borders_img = None filename_base = importer.filename_to_base(path, series) subimg_base = None if load_subimage and not config.save_subimg: # load a saved sub-image file if available and not set to save one subimg_base = stack_detect.make_subimage_name(filename_base, offset, size) filename_subimg = libmag.combine_paths(subimg_base, config.SUFFIX_SUBIMG) try: # load sub-image if available config.image5d = np.load(filename_subimg, mmap_mode="r") config.image5d = importer.roi_to_image5d(config.image5d) config.image5d_is_roi = True config.image5d_io = config.LoadIO.NP print("Loaded sub-image from {} with shape {}".format( filename_subimg, config.image5d.shape)) # after loading sub-image, load original image's metadata # for essential data such as vmin/vmax; will only warn if # fails to load since metadata could be specified elsewhere _, orig_info = importer.make_filenames(path, series) print("load original image metadata from:", orig_info) importer.load_metadata(orig_info) except IOError: print("Ignored sub-image file from {} as unable to load".format( filename_subimg)) proc_type = libmag.get_enum(proc_mode, config.ProcessTypes) if proc_type in (config.ProcessTypes.LOAD, config.ProcessTypes.EXPORT_ROIS, config.ProcessTypes.EXPORT_BLOBS, config.ProcessTypes.DETECT): # load a blobs archive try: if subimg_base: try: # load blobs generated from sub-image config.blobs = load_blobs(subimg_base) except (FileNotFoundError, KeyError): # fallback to loading from full image blobs and getting # a subset, shifting them relative to sub-image offset print("Unable to load blobs file based on {}, will try " "from {}".format(subimg_base, filename_base)) config.blobs = load_blobs(filename_base) config.blobs, _ = detector.get_blobs_in_roi(config.blobs, offset, size, reverse=False) detector.shift_blob_rel_coords(config.blobs, np.multiply(offset, -1)) else: # load full image blobs config.blobs = load_blobs(filename_base) except (FileNotFoundError, KeyError) as e2: print("Unable to load blobs file") if proc_type in (config.ProcessTypes.LOAD, config.ProcessTypes.EXPORT_BLOBS): # blobs expected but not found raise e2 if path and config.image5d is None: # load or import the main image stack print("Loading main image") try: if path.endswith(sitk_io.EXTS_3D): # attempt to format supported by SimpleITK and prepend time axis config.image5d = sitk_io.read_sitk_files(path)[None] config.image5d_io = config.LoadIO.SITK else: # load or import from MagellanMapper Numpy format import_only = proc_type is config.ProcessTypes.IMPORT_ONLY if not import_only: # load previously imported image config.image5d = importer.read_file(path, series) if allow_import: # re-import over existing image or import new image if os.path.isdir(path) and all( [r is None for r in config.reg_suffixes.values()]): # import directory of single plane images to single # stack if no register suffixes are set chls, import_md = importer.setup_import_dir(path) add_metadata() prefix = config.prefix if not prefix: prefix = os.path.join( os.path.dirname(path), importer.DEFAULT_IMG_STACK_NAME) config.image5d = importer.import_planes_to_stack( chls, prefix, import_md) elif import_only or config.image5d is None: # import multi-plane image chls, import_path = importer.setup_import_multipage( path) prefix = config.prefix if config.prefix else import_path import_md = importer.setup_import_metadata( chls, config.channel, series) add_metadata() config.image5d = importer.import_multiplane_images( chls, prefix, import_md, series, channel=config.channel) config.image5d_io = config.LoadIO.NP except FileNotFoundError as e: print(e) print("Could not load {}, will fall back to any associated " "registered image".format(path)) if config.metadatas and config.metadatas[0]: # assign metadata from alternate file if given to supersede settings # for any loaded image5d # TODO: access metadata directly from given image5d's dict to allow # loading multiple image5d images simultaneously importer.assign_metadata(config.metadatas[0]) # main image is currently required since many parameters depend on it atlas_suffix = config.reg_suffixes[config.RegSuffixes.ATLAS] if atlas_suffix is None and config.image5d is None: # fallback to atlas if main image not already loaded atlas_suffix = config.RegNames.IMG_ATLAS.value print( "main image is not set, falling back to registered " "image with suffix", atlas_suffix) # use prefix to get images registered to a different image, eg a # downsampled version, or a different version of registered images path = config.prefix if config.prefix else path if path and atlas_suffix is not None: try: # will take the place of any previously loaded image5d config.image5d = sitk_io.read_sitk_files( path, reg_names=atlas_suffix)[None] config.image5d_io = config.LoadIO.SITK except FileNotFoundError as e: print(e) annotation_suffix = config.reg_suffixes[config.RegSuffixes.ANNOTATION] if annotation_suffix is not None: # load labels image, set up scaling, and load labels file try: # TODO: need to support multichannel labels images config.labels_img = sitk_io.read_sitk_files( path, reg_names=annotation_suffix) if config.image5d is not None: config.labels_scaling = importer.calc_scaling( config.image5d, config.labels_img) if config.load_labels is not None: labels_ref = ontology.load_labels_ref(config.load_labels) if isinstance(labels_ref, pd.DataFrame): # parse CSV files loaded into data frame config.labels_ref_lookup = ontology.create_lookup_pd( labels_ref) else: # parse dict from ABA JSON file config.labels_ref_lookup = ( ontology.create_aba_reverse_lookup(labels_ref)) except FileNotFoundError as e: print(e) borders_suffix = config.reg_suffixes[config.RegSuffixes.BORDERS] if borders_suffix is not None: # load borders image, which can also be another labels image try: config.borders_img = sitk_io.read_sitk_files( path, reg_names=borders_suffix) except FileNotFoundError as e: print(e) if (config.atlas_labels[config.AtlasLabels.ORIG_COLORS] and config.load_labels is not None): # load original labels image from same directory as ontology # file for consistent ID-color mapping, even if labels are missing try: config.labels_img_orig = sitk_io.load_registered_img( config.load_labels, config.RegNames.IMG_LABELS.value) except FileNotFoundError as e: print(e) libmag.warn( "could not load original labels image; colors may differ" "differ from it") load_rot90 = config.roi_profile["load_rot90"] if load_rot90 and config.image5d is not None: # rotate main image specified num of times x90deg after loading since # need to rotate images output by deep learning toolkit config.image5d = np.rot90(config.image5d, load_rot90, (2, 3)) if (config.image5d is not None and load_subimage and not config.image5d_is_roi): # crop full image to bounds of sub-image config.image5d = plot_3d.prepare_subimg(config.image5d, size, offset)[None] config.image5d_is_roi = True # add any additional image5d thresholds for multichannel images, such # as those loaded without metadata for these settings colormaps.setup_cmaps() num_channels = get_num_channels(config.image5d) config.near_max = libmag.pad_seq(config.near_max, num_channels, -1) config.near_min = libmag.pad_seq(config.near_min, num_channels, 0) config.vmax_overview = libmag.pad_seq(config.vmax_overview, num_channels) colormaps.setup_colormaps(num_channels)
def transpose_img(filename, series, plane=None, rescale=None, target_size=None): """Transpose Numpy NPY saved arrays into new planar orientations and rescaling or resizing. Rescaling/resizing take place in multiprocessing. Files are saved through memmap-based arrays to minimize RAM usage. Output filenames are based on the ``make_modifer_[task]`` functions. Currently transposes all channels, ignoring :attr:``config.channel`` parameter. Args: filename: Full file path in :attribute:cli:`filename` format. series: Series within multi-series file. plane: Planar orientation (see :attribute:plot_2d:`PLANES`). Defaults to None, in which case no planar transformation will occur. rescale: Rescaling factor; defaults to None. Takes precedence over ``target_size``. target_size (List[int]): Target shape in x,y,z; defaults to None, in which case the target size will be extracted from the register profile if available if available. """ if target_size is None: target_size = config.atlas_profile["target_size"] if plane is None and rescale is None and target_size is None: print("No transposition to perform, skipping") return time_start = time() # even if loaded already, reread to get image metadata # TODO: consider saving metadata in config and retrieving from there img5d = importer.read_file(filename, series) info = img5d.meta image5d = img5d.img sizes = info["sizes"] # make filenames based on transpositions modifier = "" if plane is not None: modifier = make_modifier_plane(plane) # either rescaling or resizing if rescale is not None: modifier += make_modifier_scale(rescale) elif target_size: # target size may differ from final output size but allows a known # size to be used for finding the file later modifier += make_modifier_resized(target_size) filename_image5d_npz, filename_info_npz = importer.make_filenames( filename, series, modifier=modifier) # TODO: image5d should assume 4/5 dimensions offset = 0 if image5d.ndim <= 3 else 1 multichannel = image5d.ndim >= 5 image5d_swapped = image5d if plane is not None and plane != config.PLANE[0]: # swap z-y to get (y, z, x) order for xz orientation image5d_swapped = np.swapaxes(image5d_swapped, offset, offset + 1) config.resolutions[0] = libmag.swap_elements(config.resolutions[0], 0, 1) if plane == config.PLANE[2]: # swap new y-x to get (x, z, y) order for yz orientation image5d_swapped = np.swapaxes(image5d_swapped, offset, offset + 2) config.resolutions[0] = libmag.swap_elements( config.resolutions[0], 0, 2) scaling = None if rescale is not None or target_size is not None: # rescale based on scaling factor or target specific size rescaled = image5d_swapped # TODO: generalize for more than 1 preceding dimension? if offset > 0: rescaled = rescaled[0] max_pixels = [100, 500, 500] sub_roi_size = None if target_size: # to avoid artifacts from thin chunks, fit image into even # number of pixels per chunk by rounding up number of chunks # and resizing each chunk by ratio of total size to chunk num target_size = target_size[::-1] # change to z,y,x shape = rescaled.shape[:3] num_chunks = np.ceil(np.divide(shape, max_pixels)) max_pixels = np.ceil(np.divide(shape, num_chunks)).astype(np.int) sub_roi_size = np.floor(np.divide(target_size, num_chunks)).astype(np.int) print("Resizing image of shape {} to target_size: {}, using " "num_chunks: {}, max_pixels: {}, sub_roi_size: {}".format( rescaled.shape, target_size, num_chunks, max_pixels, sub_roi_size)) else: print("Rescaling image of shape {} by factor of {}".format( rescaled.shape, rescale)) # rescale in chunks with multiprocessing sub_roi_slices, _ = chunking.stack_splitter(rescaled.shape, max_pixels) is_fork = chunking.is_fork() if is_fork: Downsampler.set_data(rescaled) sub_rois = np.zeros_like(sub_roi_slices) pool = chunking.get_mp_pool() pool_results = [] for z in range(sub_roi_slices.shape[0]): for y in range(sub_roi_slices.shape[1]): for x in range(sub_roi_slices.shape[2]): coord = (z, y, x) slices = sub_roi_slices[coord] args = [coord, slices, rescale, sub_roi_size, multichannel] if not is_fork: # pickle chunk if img not directly available args.append(rescaled[slices]) pool_results.append( pool.apply_async(Downsampler.rescale_sub_roi, args=args)) for result in pool_results: coord, sub_roi = result.get() print("replacing sub_roi at {} of {}".format( coord, np.add(sub_roi_slices.shape, -1))) sub_rois[coord] = sub_roi pool.close() pool.join() rescaled_shape = chunking.get_split_stack_total_shape(sub_rois) if offset > 0: rescaled_shape = np.concatenate(([1], rescaled_shape)) print("rescaled_shape: {}".format(rescaled_shape)) # rescale chunks directly into memmap-backed array to minimize RAM usage image5d_transposed = np.lib.format.open_memmap( filename_image5d_npz, mode="w+", dtype=sub_rois[0, 0, 0].dtype, shape=tuple(rescaled_shape)) chunking.merge_split_stack2(sub_rois, None, offset, image5d_transposed) if rescale is not None: # scale resolutions based on single rescaling factor config.resolutions = np.multiply(config.resolutions, 1 / rescale) else: # scale resolutions based on size ratio for each dimension config.resolutions = np.multiply(config.resolutions, (image5d_swapped.shape / rescaled_shape)[1:4]) sizes[0] = rescaled_shape scaling = importer.calc_scaling(image5d_swapped, image5d_transposed) else: # transfer directly to memmap-backed array image5d_transposed = np.lib.format.open_memmap( filename_image5d_npz, mode="w+", dtype=image5d_swapped.dtype, shape=image5d_swapped.shape) if plane == config.PLANE[1] or plane == config.PLANE[2]: # flip upside-down if re-orienting planes if offset: image5d_transposed[0, :] = np.fliplr(image5d_swapped[0, :]) else: image5d_transposed[:] = np.fliplr(image5d_swapped[:]) else: image5d_transposed[:] = image5d_swapped[:] sizes[0] = image5d_swapped.shape # save image metadata print("detector.resolutions: {}".format(config.resolutions)) print("sizes: {}".format(sizes)) image5d.flush() importer.save_image_info( filename_info_npz, info["names"], sizes, config.resolutions, info["magnification"], info["zoom"], *importer.calc_intensity_bounds(image5d_transposed), scaling, plane) print("saved transposed file to {} with shape {}".format( filename_image5d_npz, image5d_transposed.shape)) print("time elapsed (s): {}".format(time() - time_start))
def detect_sub_roi(cls, coord, offset, last_coord, denoise_max_shape, exclude_border, sub_roi, channel, img_path=None, coloc=False): """Perform 3D blob detection within a sub-ROI without accessing class attributes, such as for spawned multiprocessing. Args: coord (Tuple[int]): Coordinate of the sub-ROI in the order z,y,x. offset (Tuple[int]): Offset of the sub-ROI within the full ROI, in z,y,x. last_coord (:obj:`np.ndarray`): See attributes. denoise_max_shape (Tuple[int]): See attributes. exclude_border (bool): See attributes. sub_roi (:obj:`np.ndarray`): Array in which to perform detections. img_path (str): Path from which to load metadatat; defaults to None. If given, the command line arguments will be reloaded to set up the image and processing parameters. coloc (bool): True to perform blob co-localizations; defaults to False. channel (Sequence[int]): Sequence of channels, where None detects in all channels. Returns: Tuple[int], :obj:`np.ndarray`: The coordinate given back again to identify the sub-ROI position and an array of detected blobs. """ if img_path: # reload command-line parameters and image metadata, which is # required if run from a spawned (not forked) process cli.process_cli_args() _, orig_info = importer.make_filenames(img_path) importer.load_metadata(orig_info) print("detecting blobs in sub-ROI at {} of {}, offset {}, shape {}..." .format(coord, last_coord, tuple(offset.astype(int)), sub_roi.shape)) if denoise_max_shape is not None: # further split sub-ROI for preprocessing locally denoise_roi_slices, _ = chunking.stack_splitter( sub_roi.shape, denoise_max_shape) for z in range(denoise_roi_slices.shape[0]): for y in range(denoise_roi_slices.shape[1]): for x in range(denoise_roi_slices.shape[2]): denoise_coord = (z, y, x) denoise_roi = sub_roi[denoise_roi_slices[denoise_coord]] _logger.debug( f"preprocessing sub-sub-ROI {denoise_coord} of " f"{np.subtract(denoise_roi_slices.shape, 1)} " f"(shape {denoise_roi.shape} within sub-ROI shape " f"{sub_roi.shape})") denoise_roi = plot_3d.saturate_roi( denoise_roi, channel=channel) denoise_roi = plot_3d.denoise_roi( denoise_roi, channel=channel) # replace slices with denoised ROI denoise_roi_slices[denoise_coord] = denoise_roi # re-merge back into the sub-ROI merged_shape = chunking.get_split_stack_total_shape( denoise_roi_slices) merged = np.zeros( tuple(merged_shape), dtype=denoise_roi_slices[0, 0, 0].dtype) chunking.merge_split_stack2(denoise_roi_slices, None, 0, merged) sub_roi = merged if exclude_border is None: exclude = None else: exclude = np.array([exclude_border, exclude_border]) exclude[0, np.equal(coord, 0)] = 0 exclude[1, np.equal(coord, last_coord)] = 0 segments = detector.detect_blobs(sub_roi, channel, exclude) if coloc and segments is not None: # co-localize blobs and append to blobs array colocs = colocalizer.colocalize_blobs(sub_roi, segments) segments = np.hstack((segments, colocs)) #print("segs before (offset: {}):\n{}".format(offset, segments)) if segments is not None: # shift both coordinate sets (at beginning and end of array) to # absolute positioning, using the latter set to store shifted # coordinates based on duplicates and the former for initial # positions to check for multiple duplicates detector.shift_blob_rel_coords(segments, offset) detector.shift_blob_abs_coords(segments, offset) #print("segs after:\n{}".format(segments)) return coord, segments
def setup_images(path: str, series: Optional[int] = None, offset: Optional[Sequence[int]] = None, size: Optional[Sequence[int]] = None, proc_type: Optional["config.ProcessTypes"] = None, allow_import: bool = True, fallback_main_img: bool = True): """Sets up an image and all associated images and metadata. Paths for related files such as registered images will generally be constructed from ``path``. If :attr:`config.prefix` is set, it will be used in place of ``path`` for registered labels. Args: path: Path to image from which MagellanMapper-style paths will be generated. series: Image series number; defaults to None. offset: Sub-image offset given in z,y,x; defaults to None. size: Sub-image shape given in z,y,x; defaults to None. proc_type: Processing type. allow_import: True to allow importing the image if it cannot be loaded; defaults to True. fallback_main_img: True to fall back to loading a registered image if possible if the main image could not be loaded; defaults to True. """ def add_metadata(): # override metadata set from command-line metadata args if available md = { config.MetaKeys.RESOLUTIONS: config.meta_dict[config.MetaKeys.RESOLUTIONS], config.MetaKeys.MAGNIFICATION: config.meta_dict[config.MetaKeys.MAGNIFICATION], config.MetaKeys.ZOOM: config.meta_dict[config.MetaKeys.ZOOM], config.MetaKeys.SHAPE: config.meta_dict[config.MetaKeys.SHAPE], config.MetaKeys.DTYPE: config.meta_dict[config.MetaKeys.DTYPE], } for key, val in md.items(): if val is not None: # explicitly set metadata takes precedence over extracted vals import_md[key] = val res = import_md[config.MetaKeys.RESOLUTIONS] if res is None: # default to 1 for x,y,z since image resolutions are required res = [1] * 3 import_md[config.MetaKeys.RESOLUTIONS] = res _logger.warn("No image resolutions found. Defaulting to: %s", res) # LOAD MAIN IMAGE # reset image5d config.image5d = None config.image5d_is_roi = False config.img5d = Image5d() load_subimage = offset is not None and size is not None config.resolutions = None # reset label images config.labels_img = None config.labels_img_sitk = None config.labels_img_orig = None config.borders_img = None config.labels_meta = None config.labels_ref = None # reset blobs config.blobs = None filename_base = importer.filename_to_base(path, series) subimg_base = None blobs = None # registered images set to load atlas_suffix = config.reg_suffixes[config.RegSuffixes.ATLAS] annotation_suffix = config.reg_suffixes[config.RegSuffixes.ANNOTATION] borders_suffix = config.reg_suffixes[config.RegSuffixes.BORDERS] if load_subimage and not config.save_subimg: # load a saved sub-image file if available and not set to save one subimg_base = naming.make_subimage_name(filename_base, offset, size) filename_subimg = libmag.combine_paths(subimg_base, config.SUFFIX_SUBIMG) try: # load sub-image if available config.image5d = np.load(filename_subimg, mmap_mode="r") config.image5d = importer.roi_to_image5d(config.image5d) config.image5d_is_roi = True config.img5d.img = config.image5d config.img5d.path_img = filename_subimg config.img5d.img_io = config.LoadIO.NP config.img5d.subimg_offset = offset config.img5d.subimg_size = size print("Loaded sub-image from {} with shape {}".format( filename_subimg, config.image5d.shape)) # after loading sub-image, load original image's metadata # for essential data such as vmin/vmax; will only warn if # fails to load since metadata could be specified elsewhere _, orig_info = importer.make_filenames(path, series) print("load original image metadata from:", orig_info) importer.load_metadata(orig_info) except IOError: print("Ignored sub-image file from {} as unable to load".format( filename_subimg)) if config.load_data[config.LoadData.BLOBS] or proc_type in ( config.ProcessTypes.LOAD, config.ProcessTypes.COLOC_MATCH, config.ProcessTypes.EXPORT_ROIS, config.ProcessTypes.EXPORT_BLOBS): # load a blobs archive blobs = detector.Blobs() try: if subimg_base: try: # load blobs generated from sub-image config.blobs = blobs.load_blobs( img_to_blobs_path(subimg_base)) except (FileNotFoundError, KeyError): # fallback to loading from full image blobs and getting # a subset, shifting them relative to sub-image offset print("Unable to load blobs file based on {}, will try " "from {}".format(subimg_base, filename_base)) config.blobs = blobs.load_blobs( img_to_blobs_path(filename_base)) blobs.blobs, _ = detector.get_blobs_in_roi(blobs.blobs, offset, size, reverse=False) detector.Blobs.shift_blob_rel_coords( blobs.blobs, np.multiply(offset, -1)) else: # load full image blobs config.blobs = blobs.load_blobs( img_to_blobs_path(filename_base)) except (FileNotFoundError, KeyError) as e2: print("Unable to load blobs file") if proc_type in (config.ProcessTypes.LOAD, config.ProcessTypes.EXPORT_BLOBS): # blobs expected but not found raise e2 if path and config.image5d is None and not atlas_suffix: # load or import the main image stack print("Loading main image") try: path_lower = path.lower() import_only = proc_type is config.ProcessTypes.IMPORT_ONLY if path_lower.endswith(sitk_io.EXTS_3D): # load format supported by SimpleITK and prepend time axis; # if 2D, convert to 3D img5d = sitk_io.read_sitk_files(path, make_3d=True) elif not import_only and path_lower.endswith((".tif", ".tiff")): # load TIF file directly img5d, meta = read_tif(path) config.resolutions = meta[config.MetaKeys.RESOLUTIONS] else: # load or import from MagellanMapper Numpy format img5d = None if not import_only: # load previously imported image img5d = importer.read_file(path, series) if allow_import and (img5d is None or img5d.img is None): # import image; will re-import over any existing image file if os.path.isdir(path) and all( [r is None for r in config.reg_suffixes.values()]): # import directory of single plane images to single # stack if no register suffixes are set chls, import_md = importer.setup_import_dir(path) add_metadata() prefix = config.prefix if not prefix: prefix = os.path.join( os.path.dirname(path), importer.DEFAULT_IMG_STACK_NAME) img5d = importer.import_planes_to_stack( chls, prefix, import_md) elif import_only: # import multi-plane image chls, import_path = importer.setup_import_multipage( path) prefix = config.prefix if config.prefix else import_path import_md = importer.setup_import_metadata( chls, config.channel, series) add_metadata() img5d = importer.import_multiplane_images( chls, prefix, import_md, series, channel=config.channel) if img5d is not None: # set loaded main image in config config.img5d = img5d config.image5d = config.img5d.img except FileNotFoundError as e: _logger.exception(e) _logger.info("Could not load %s", path) if config.metadatas and config.metadatas[0]: # assign metadata from alternate file if given to supersede settings # for any loaded image5d # TODO: access metadata directly from given image5d's dict to allow # loading multiple image5d images simultaneously importer.assign_metadata(config.metadatas[0]) # main image is currently required since many parameters depend on it if fallback_main_img and atlas_suffix is None and config.image5d is None: # fallback to atlas if main image not already loaded atlas_suffix = config.RegNames.IMG_ATLAS.value _logger.info( "Main image is not set, falling back to registered image with " "suffix %s", atlas_suffix) # use prefix to get images registered to a different image, eg a # downsampled version, or a different version of registered images path = config.prefix if config.prefix else path if path and atlas_suffix is not None: try: # will take the place of any previously loaded image5d config.img5d = sitk_io.read_sitk_files(path, atlas_suffix, make_3d=True) config.image5d = config.img5d.img except FileNotFoundError as e: print(e) # load metadata related to the labels image config.labels_metadata = labels_meta.LabelsMeta( f"{path}." if config.prefix else path).load() # load labels reference file, prioritizing path given by user # and falling back to any extension matching PATH_LABELS_REF path_labels_refs = [config.load_labels] labels_path_ref = config.labels_metadata.path_ref if labels_path_ref: path_labels_refs.append(labels_path_ref) labels_ref = None for ref in path_labels_refs: if not ref: continue try: # load labels reference file labels_ref = ontology.LabelsRef(ref).load() if labels_ref.ref_lookup is not None: config.labels_ref = labels_ref _logger.debug("Loaded labels reference file from %s", ref) break except (FileNotFoundError, KeyError): pass if path_labels_refs and (labels_ref is None or labels_ref.ref_lookup is None): # warn if labels path given but none found _logger.warn( "Unable to load labels reference file from '%s', skipping", path_labels_refs) if annotation_suffix is not None: try: # load labels image # TODO: need to support multichannel labels images img5d, config.labels_img_sitk = sitk_io.read_sitk_files( path, annotation_suffix, True, True) config.labels_img = img5d.img[0] except FileNotFoundError as e: print(e) if config.image5d is not None: # create a blank labels images for custom annotation; colormap # can be generated for the original labels loaded below config.labels_img = np.zeros(config.image5d.shape[1:4], dtype=int) print("Created blank labels image from main image") if config.image5d is not None and config.labels_img is not None: # set up scaling factors by dimension between intensity and # labels images config.labels_scaling = importer.calc_scaling( config.image5d, config.labels_img) if borders_suffix is not None: # load borders image, which can also be another labels image try: config.borders_img = sitk_io.read_sitk_files(path, borders_suffix, make_3d=True).img[0] except FileNotFoundError as e: print(e) if config.atlas_labels[config.AtlasLabels.ORIG_COLORS]: labels_orig_ids = config.labels_metadata.region_ids_orig if labels_orig_ids is None: if config.load_labels is not None: # load original labels image from same directory as ontology # file for consistent ID-color mapping, even if labels are missing try: config.labels_img_orig = sitk_io.load_registered_img( config.load_labels, config.RegNames.IMG_LABELS.value) except FileNotFoundError as e: print(e) if config.labels_img is not None and config.labels_img_orig is None: _logger.warn( "Could not load original labels image IDs; colors may " "differ from the original image") load_rot90 = config.roi_profile["load_rot90"] if load_rot90 and config.image5d is not None: # rotate main image specified num of times x90deg after loading since # need to rotate images output by deep learning toolkit config.image5d = np.rot90(config.image5d, load_rot90, (2, 3)) if (config.image5d is not None and load_subimage and not config.image5d_is_roi): # crop full image to bounds of sub-image config.image5d = plot_3d.prepare_subimg(config.image5d, offset, size)[None] config.image5d_is_roi = True # add any additional image5d thresholds for multichannel images, such # as those loaded without metadata for these settings colormaps.setup_cmaps() num_channels = get_num_channels(config.image5d) config.near_max = libmag.pad_seq(config.near_max, num_channels, -1) config.near_min = libmag.pad_seq(config.near_min, num_channels, 0) config.vmax_overview = libmag.pad_seq(config.vmax_overview, num_channels) colormaps.setup_colormaps(num_channels) if config.labels_img is not None: # make discrete colormap for labels image config.cmap_labels = colormaps.setup_labels_cmap(config.labels_img) if (blobs is not None and blobs.blobs is not None and config.img5d.img is not None and blobs.roi_size is not None): # scale blob coordinates to main image if shapes differ scaling = np.divide(config.img5d.img.shape[1:4], blobs.roi_size) # scale radius by mean of other dimensions' scaling scaling = np.append(scaling, np.mean(scaling)) if not np.all(scaling == 1): _logger.debug("Scaling blobs to main image by factor: %s", scaling) blobs.blobs[:, :4] = ontology.scale_coords(blobs.blobs[:, :4], scaling) blobs.scaling = scaling