def test_interpolate(self): mesh0 = RectangularMesh((100, 100, 1), (1e-9, 1e-9, 6e-9)) mesh1 = RectangularMesh((50, 50, 1), (2e-9, 2e-9, 6e-9)) M = VectorField(mesh0) M.fill((10, 20, 30)) M2 = M.interpolate(mesh1) M2_avg = M2.average() self.assertEqual(10, M2_avg[0]) self.assertEqual(20, M2_avg[1]) self.assertEqual(30, M2_avg[2])
def test_rotated_magnetization_produces_same_rotated_exchange_field(self): def compute(M, Ms, A, rotations=1): for _ in range(rotations): M = right_rotate_vector_field(M) Ms = right_rotate_field(Ms); A = right_rotate_field(A) H = VectorField(M.mesh) nx, ny, nz = M.mesh.num_nodes dx, dy, dz = M.mesh.delta pbc, pbc_rep = M.mesh.periodic_bc bcx, bcy, bcz = "x" in pbc, "y" in pbc, "z" in pbc magneto.exchange(nx, ny, nz, dx, dy, dz, bcx, bcy, bcz, Ms, A, M, H) for _ in range(rotations): H = left_rotate_vector_field(H) return H #mesh = RectangularMesh((32,16,8), (1e-9,1e-9,1e-9), "z", 20) mesh = RectangularMesh((20, 20, 6), (5e-9, 5e-9, 5e-9), "xy", 20) M0 = VectorField(mesh); M0.randomize(); M0.scale(8e5) A = Field(mesh); A.fill(Material.Py().A) Ms = Field(mesh); Ms.fill(Material.Py().Ms) H0 = compute(M0, Ms, A, 0) H1 = compute(M0, Ms, A, 1) H2 = compute(M0, Ms, A, 2) self.assertVectorFieldEqual(H0, H1, 1e0) self.assertVectorFieldEqual(H0, H2, 1e0)
def test_2d(self): mesh = RectangularMesh((100, 100, 1), (1, 1, 1)) self.assertEquals([0 + 0 * 100], self.shape0.getCellIndices(mesh)) self.assertEquals([99 + 0 * 100], self.shape1.getCellIndices(mesh)) self.assertEquals([0 + 99 * 100], self.shape2.getCellIndices(mesh)) self.assertEquals([99 + 99 * 100], self.shape3.getCellIndices(mesh))
def setUp(self): mesh = RectangularMesh((100, 100, 1), (1, 1, 1)) isc = ImageShapeCreator("image_shape_creator_test.png", mesh) self.shape0 = isc.pick("blue") # bottom-left of img -> (0,0) self.shape1 = isc.pick("green") # bottom-right -> (99,0) self.shape2 = isc.pick("black") # top-left -> (0,99) self.shape3 = isc.pick("red") # top-right -> (99,99)
def test_1(self): mesh = RectangularMesh((10,10,10), (1e-9,1e-9,1e-9)) M = VectorField(mesh); M.fill((-8e5,0,0)) Ms = Field(mesh); Ms.fill(8e5) sam = magneto.scaled_abs_max(M, Ms) self.assertEqual(1.0, sam)
def test_derived_quantities(self): mesh = RectangularMesh((10, 10, 10), (2, 2, 2)) self.assertEqual(mesh.cell_volume, 8) self.assertEqual(mesh.volume, 8000) self.assertEqual(mesh.size, (20, 20, 20)) self.assertEqual(mesh.delta, (2, 2, 2)) self.assertEqual(mesh.num_nodes, (10, 10, 10)) self.assertEqual(mesh.total_nodes, 1000) self.assertEqual(mesh.periodic_bc, ("", 1))
def test_getCellIndices(self): mesh = RectangularMesh((20, 20, 20), (0.1, 0.1, 0.1)) combo = self.cube1 | self.cube2 cells = combo.getCellIndices(mesh) self.assertEqual(2000, len(cells)) combo = self.cube1 & self.cube2 cells = combo.getCellIndices(mesh) self.assertEqual(0, len(cells))
def test_2(self): mesh = RectangularMesh((10, 10, 10), (1e-9, 1e-9, 1e-9)) M = VectorField(mesh) M.fill((-8e5, 0, 0)) Ms = Field(mesh) Ms.fill(8e5) Ms.set(0, 0) Ms.set(0, 8e5) self.assertFalse(Ms.isUniform()) sam = magneto.scaled_abs_max(M, Ms) self.assertEqual(1.0, sam)
def test_llge(self): mesh = RectangularMesh((10, 10, 10), (1e-9, 1e-9, 1e-9)) f1, f2 = Field(mesh), Field(mesh) M, H, dM = VectorField(mesh), VectorField(mesh), VectorField(mesh) # dM = f1*MxH + f2*Mx(MxH) f1.fill(10) f2.fill(20) M.fill((5, 10, 15)) H.fill((20, 25, 30)) magneto.llge(f1, f2, M, H, dM) for idx in range(dM.size()): self.assertEqual(dM.get(idx), (-60750.0, -13500.0, 29250.0))
def right_rotate_field(M): pbc, pbc_rep = M.mesh.periodic_bc pbc2, pbc_rep2 = "", pbc_rep if "x" in pbc: pbc2 += "y" if "y" in pbc: pbc2 += "z" if "z" in pbc: pbc2 += "x" nn = M.mesh.num_nodes dd = M.mesh.delta mesh = RectangularMesh((nn[2], nn[0], nn[1]), (dd[2], dd[0], dd[1]), pbc2, pbc_rep2) M2 = Field(mesh) for x, y, z in M.mesh.iterateCellIndices(): a = M.get(x, y, z) M2.set(z, x, y, a) return M2
def test_parallel_and_orthogonal_anisotropy(self): mesh = RectangularMesh((40, 40, 40), (1e-9, 1e-9, 1e-9)) k = Field(mesh) k.fill(520e3) Ms = Field(mesh) Ms.fill(8e5) def calc(axis_vec, M_vec): axis = VectorField(mesh) axis.fill(axis_vec) M = VectorField(mesh) M.fill(M_vec) H = VectorField(mesh) H.fill((0, 0, 0)) E = magneto.uniaxial_anisotropy(axis, k, Ms, M, H) * mesh.cell_volume return H.average(), E # parallel cases E_ref = 0.0 H, E = calc((1, 0, 0), (8e5, 0, 0)) self.assertAlmostEqual(E_ref, E) H, E = calc((0, 1, 0), (0, -8e5, 0)) self.assertAlmostEqual(E_ref, E) H, E = calc((0, 0, -1), (0, 0, -1)) self.assertAlmostEqual(E_ref, E) # orthogonal cases E_ref = k.average() * mesh.volume H, E = calc((0, 0, 1), (8e5, 0, 0)) self.assertAlmostEqual(E_ref, E) for i in range(3): self.assertAlmostEqual(0, H[i]) H, E = calc((1, 0, 0), (0, -8e5, 0)) self.assertAlmostEqual(E_ref, E) for i in range(3): self.assertAlmostEqual(0, H[i]) H, E = calc((0, -1, 0), (0, 0, 1)) self.assertAlmostEqual(E_ref, E) for i in range(3): self.assertAlmostEqual(0, H[i])
def pbc_exchange(self, nx, ny, nz): dx, dy, dz = 1e-9, 1e-9, 1e-9 mesh = RectangularMesh((nx, ny, nz), (dx, dy, dz)) A = Field(mesh); A.fill(Material.Py().A) Ms = Field(mesh); Ms.fill(Material.Py().Ms) M = VectorField(mesh) H = VectorField(mesh) for bcx, bcy, bcz in itertools.product([False, True], [False, True], [False, True]): M.fill(tuple((random.random()-0.5) * 2e5 for i in range(3))) #M.fill((8e5, 8e5, -8e5)) magneto.exchange(nx, ny, nz, dx, dy, dz, bcx, bcy, bcz, Ms, A, M, H) for i in range(nx*ny*nz): #self.assertEqual(H.get(i), (0.0, 0.0, 0.0)) self.assertAlmostEqual(H.get(i)[0], 0.0) self.assertAlmostEqual(H.get(i)[1], 0.0) self.assertAlmostEqual(H.get(i)[2], 0.0)
def test_parallel_anisotropy(self): mesh = RectangularMesh((40, 40, 40), (1e-9, 1e-9, 1e-9)) k = Field(mesh) k.fill(520e3) Ms = Field(mesh) Ms.fill(8e5) def calc(axis1_vec, axis2_vec, M_vec): axis1 = VectorField(mesh) axis1.fill(axis1_vec) axis2 = VectorField(mesh) axis2.fill(axis2_vec) M = VectorField(mesh) M.fill(M_vec) H = VectorField(mesh) H.fill((0, 0, 0)) E = magneto.cubic_anisotropy(axis1, axis2, k, Ms, M, H) * mesh.cell_volume return H.average(), E # parallel cases E_ref = 0.0 H, E = calc((1, 0, 0), (0, 1, 0), (8e5, 0, 0)) self.assertEqual(E_ref, E) for i in range(3): self.assertEqual(0.0, H[i]) H, E = calc((1, 0, 0), (0, -1, 0), (0, -8e5, 0)) self.assertEqual(E_ref, E) for i in range(3): self.assertEqual(0, H[i]) H, E = calc((0, -1, 0), (0, 0, -1), (0, 0, 8e5)) self.assertAlmostEqual(E_ref, E) for i in range(3): self.assertAlmostEqual(0, H[i])
def test_rotated_magnetization_produces_same_rotated_strayfield(self): def compute(M, rotations=1): for _ in range(rotations): M = right_rotate_vector_field(M) H = VectorField(M.mesh) stray = StrayFieldCalculator(M.mesh) stray.calculate(M, H) for _ in range(rotations): H = left_rotate_vector_field(H) return H mesh = RectangularMesh((20, 20, 6), (5e-9, 5e-9, 5e-9), "xy", 20) M0 = VectorField(mesh) M0.randomize() M0.scale(8e5) H0 = compute(M0, 0) H1 = compute(M0, 1) H2 = compute(M0, 2) self.assertVectorFieldEqual(H0, H1, 1e0) self.assertVectorFieldEqual(H0, H2, 1e0)
def test_findExtremum(self): mesh = RectangularMesh((100, 100, 1), (1e-9, 1e-9, 6e-9)) M = VectorField(mesh) M.fill((100, 100, 100)) M.findExtremum(z_slice=0, component=0)
def setUp(self): world = World(RectangularMesh((10, 10, 10), (1e-9, 1e-9, 1e-9))) self.solver = create_solver(world, [ExternalField])
def setUp(self): self.sphere = Sphere((1, 1, 1), 1) self.mesh = RectangularMesh((20, 20, 20), (0.1, 0.1, 0.1))
def setUp(self): self.cube = Cuboid((0, 0, 0), (1, 1, 1)) self.mesh = RectangularMesh((10, 10, 10), (1.0, 1.0, 1.0))
def setUp(self): self.mesh = RectangularMesh((100, 100, 1), (1e-9, 1e-9, 1e-9)) self.world = World( self.mesh, Body("body1", Material.Py(), Everywhere()), Body("body2", Material.Py(), Cylinder((0, 0, 0), (0, 50e-9, 0), 20e-9)))
def test_getCellIndices(self): mesh = RectangularMesh((10, 10, 10), (1, 1, 1)) ew = Everywhere() idx = ew.getCellIndices(mesh) self.assertEqual(1000, len(idx))
def test_properties(self): mesh = RectangularMesh((1, 2, 3), (4.0, 5.0, 6.0)) self.assertEqual(mesh.num_nodes, (1, 2, 3)) self.assertEqual(mesh.delta, (4.0, 5.0, 6.0))