示例#1
0
def test_convolve_1d_axis_3d():
    f = np.random.random((128,32,6))
    w = np.array([.1, .2, .4])
    fw = mh.convolve1d(f, w, 0)
    for i in range(f.shape[1]):
        for j in range(f.shape[2]):
            assert np.allclose(np.correlate(f[:,i,j], w,'same')[1:-1:] , fw[:,i,j][1:-1])
示例#2
0
def test_convolve1d():
    ws = [
        np.array([-.1, .5,.7,.7,.5]),
        np.array([.1,.7,.5]),
        ]
    for i in range(8):
        for w in ws:
            f = np.random.random((128,96))
            ww = np.atleast_2d(w)
            fw = mh.convolve(f, ww)
            fww = mh.convolve(f, ww.T)

            f0w = mh.convolve1d(f, w, 0)
            f1w = mh.convolve1d(f, w, 1)

            assert np.all(fw == f1w)
            assert np.all(fww == f0w)
def test_convolve_1d_axis_3d():
    f = np.random.random((128, 32, 6))
    w = np.array([.1, .2, .4])
    fw = mh.convolve1d(f, w, 0)
    for i in range(f.shape[1]):
        for j in range(f.shape[2]):
            assert np.allclose(
                np.correlate(f[:, i, j], w, 'same')[1:-1:], fw[:, i, j][1:-1])
def test_convolve1d():
    ws = [
        np.array([-.1, .5, .7, .7, .5]),
        np.array([.1, .7, .5]),
    ]
    for i in range(8):
        for w in ws:
            f = np.random.random((128, 96))
            ww = np.atleast_2d(w)
            fw = mh.convolve(f, ww)
            fww = mh.convolve(f, ww.T)

            f0w = mh.convolve1d(f, w, 0)
            f1w = mh.convolve1d(f, w, 1)

            assert np.all(fw == f1w)
            assert np.all(fww == f0w)
示例#5
0
def test_convolve1d_axis():
    f = np.random.random((128,32))
    w = np.array([.1, .2, .4])
    fw = mh.convolve1d(f, w, 0)
    for i in range(32):
        assert np.allclose(np.correlate(f.T[i], w, 'same')[1:-1], fw[1:-1,i])
def test_convolve1d_axis():
    f = np.random.random((128, 32))
    w = np.array([.1, .2, .4])
    fw = mh.convolve1d(f, w, 0)
    for i in range(32):
        assert np.allclose(np.correlate(f.T[i], w, 'same')[1:-1], fw[1:-1, i])