示例#1
0
def run_query(query, location):
    """
    Execute search query to Yelp.

    :param: query: Search terms
    :param: location: Geographical location to search for
    :return: A list of Businesses
    """
    FUNC_NAME = inspect.currentframe().f_code.co_name

    if location == "":
        log_error(MODULE_NAME, FUNC_NAME, 'No location input provided.')
        return []

    client = get_yelp_api_client()
    if not client:
        return []

    # Yelp takes search term query in params kwargs,
    # and location directly as a param in search fxn.
    params = {
        'term': query,
    }

    try:
        search = Search(client)
        response = search.search(location, **params)
    except Exception as ex:
        log_exception(MODULE_NAME, FUNC_NAME, ex)

    businesses = response.businesses
    if not businesses:
        businesses = []
    return businesses
示例#2
0
def run_query(query, location):
    """
    Execute search query to Yelp.

    :param: query: Search terms
    :param: location: Geographical location to search for
    :return: A list of Businesses
    """
    FUNC_NAME = inspect.currentframe().f_code.co_name

    if location == "":
        log_error(MODULE_NAME, FUNC_NAME, 'No location input provided.')
        return []

    client = get_yelp_api_client()
    if not client:
        return []

    # Yelp takes search term query in params kwargs,
    # and location directly as a param in search fxn.
    params = {
        'term': query,
    }

    try:
        search = Search(client)
        response = search.search(location, **params)
    except Exception as ex:
        log_exception(MODULE_NAME, FUNC_NAME, ex)

    businesses = response.businesses
    if not businesses:
        businesses = []
    return businesses
示例#3
0
文件: tasks.py 项目: jcjl013/ylplines
def enqueue_fetch_reviews(self, business_id, num_reviews=0):
    """Fetch business reviews for a specific business"""
    print('self task for ' + business_id + ' is: ' + str(self))
    if Business.objects.filter(id=business_id).exists():
        business = Business.objects.get(id=business_id)
        main.engine.search_businesses.get_business_reviews(business,
                                                           num_reviews, self)
    else:
        log_error(MODULE_NAME, inspect.current_frame().f_code.co_name,
                  '%s | This business does not exists.' % business_id)
    return True
示例#4
0
def enqueue_fetch_reviews(self, business_id, num_reviews=0):
    """Fetch business reviews for a specific business"""
    print('self task for ' + business_id + ' is: ' + str(self))
    if Business.objects.filter(id=business_id).exists():
        business = Business.objects.get(id=business_id)
        main.engine.search_businesses.get_business_reviews(
            business, num_reviews, self)
    else:
        log_error(MODULE_NAME,
                  inspect.current_frame().f_code.co_name,
                  '%s | This business does not exists.' % business_id)
    return True
示例#5
0
def search_for_businesses(query="", location="", debug=False):
    """
    Search for businesses that match against search terms and return
    a list of businesses.

    :param: query: Search terms
    :param: location: Geographical location to search in or near
    :return: A list of Businesses
    """
    FUNC_NAME = inspect.currentframe().f_code.co_name

    if debug:
        location = 'San Francisco'
    elif location == "":
        log_error(MODULE_NAME, FUNC_NAME,
                  'No location input in search')
        return []

    businesses = []
    log(MODULE_NAME,
        FUNC_NAME,
        'query: "%s", location: "%s"' % (query, location))

    try:
        businesses = run_query(query, location)
    except Exception as ex:
        log_exception(MODULE_NAME, FUNC_NAME, ex)

    # First 10 entries. No pagination yet so KISS.
    businesses = businesses[:10]
    for cur_business in businesses:
        has_reviews = Review.objects.filter(
            business_id=cur_business.id
        ).exists()
        cur_business.has_reviews = has_reviews

        save_business(cur_business.id,
                      cur_business.name,
                      cur_business.image_url,
                      cur_business.url,
                      cur_business.review_count,
                      cur_business.rating)
    return businesses
示例#6
0
def search_for_businesses(query="", location="", debug=False):
    """
    Search for businesses that match against search terms and return
    a list of businesses.

    :param: query: Search terms
    :param: location: Geographical location to search in or near
    :return: A list of Businesses
    """
    FUNC_NAME = inspect.currentframe().f_code.co_name

    if debug:
        location = 'San Francisco'
    elif location == "":
        log_error(MODULE_NAME, FUNC_NAME, 'No location input in search')
        return []

    businesses = []
    log(MODULE_NAME, FUNC_NAME,
        'query: "%s", location: "%s"' % (query, location))

    try:
        businesses = run_query(query, location)
    except Exception as ex:
        log_exception(MODULE_NAME, FUNC_NAME, ex)

    # First 10 entries. No pagination yet so KISS.
    businesses = businesses[:10]
    for cur_business in businesses:
        has_reviews = Review.objects.filter(
            business_id=cur_business.id).exists()
        cur_business.has_reviews = has_reviews

        save_business(cur_business.id, cur_business.name,
                      cur_business.image_url, cur_business.url,
                      cur_business.review_count, cur_business.rating)
    return businesses
示例#7
0
def get_review_graph_data(business, debug=False):
    """
    Calculates the ylp rating along with graphing data and returns them.

    :param business: Business to get rating data for
    :param debug: Debug mode is on if True
    :return: A tuple that returns: timeline list of ylpline_ratings,
    Yelp review ratings, the overall smoothed rating, recent trend sparkline,
    6-month sparkline, 12-month sparkline, and 24-month sparkline.
    """
    FUNC_NAME = inspect.currentframe().f_code.co_name

    if debug:
        business = Business.objects.filter(id='whitewater-excitement-lotus-2')
    elif not business:
        log_error(MODULE_NAME, FUNC_NAME, '%s | No business input provided' %
                  business.id)
        return

    reviews = Review.objects.filter(business=business).order_by('publish_date')

    ylpline_ratings = [] # Detail graph - ylpline ratings
    review_ratings = []  # Detail graph - review ratings
    review = reviews[0]
    publish_date = review.publish_date
    actual_rating = float(review.rating)
    smooth_rating = float(review.rating)

    today = datetime.today().date()

    # sparkline
    one_spark_unit_ago = today - timedelta(days=18)
    two_spark_units_ago = one_spark_unit_ago - timedelta(days=18)
    three_spark_units_ago = two_spark_units_ago - timedelta(days=18)
    four_spark_units_ago = three_spark_units_ago - timedelta(days=18)
    five_spark_units_ago = four_spark_units_ago - timedelta(days=18)

    # 6mo
    one_6mo_unit_ago = today - timedelta(days=45)
    two_6mo_units_ago = one_6mo_unit_ago - timedelta(days=45)
    three_6mo_units_ago = two_6mo_units_ago - timedelta(days=45)
    four_6mo_units_ago = three_6mo_units_ago - timedelta(days=45)

    # 12mo
    one_12mo_unit_ago = today - timedelta(days=92)
    two_12mo_units_ago = one_12mo_unit_ago - timedelta(days=92)
    three_12mo_units_ago = two_12mo_units_ago - timedelta(days=92)
    four_12mo_units_ago = three_12mo_units_ago - timedelta(days=92)

    # 24mo
    one_24mo_unit_ago = today - timedelta(days=183)
    two_24mo_units_ago = one_24mo_unit_ago - timedelta(days=183)
    three_24mo_units_ago = two_24mo_units_ago - timedelta(days=183)
    four_24mo_units_ago = three_24mo_units_ago - timedelta(days=183)

    # Graph takes x-axis time in seconds since epoch
    publish_datetime = datetime(publish_date.year, publish_date.month, publish_date.day)
    epoch = datetime(1970, 1, 1)
    publish_since_epoch = (publish_datetime - epoch).total_seconds() * 1000

    ylpline_ratings.append([publish_since_epoch, smooth_rating])
    review_ratings.append([publish_since_epoch, actual_rating])
    prev_smooth_rating = smooth_rating

    one_spark_unit_back = []
    two_spark_units_back = []
    three_spark_units_back = []
    four_spark_units_back = []
    five_spark_units_back = []

    one_6mo_unit_back = []
    two_6mo_units_back = []
    three_6mo_units_back = []
    four_6mo_units_back = []

    one_12mo_unit_back = []
    two_12mo_units_back = []
    three_12mo_units_back = []
    four_12mo_units_back = []

    one_24mo_unit_back = []
    two_24mo_units_back = []
    three_24mo_units_back = []
    four_24mo_units_back = []

    # Completed index 0 review before this loop. Now repeat the algorithm over
    # the collection of reviews.
    for review in reviews[1:]:
        publish_date = review.publish_date
        publish_datetime = datetime(publish_date.year, publish_date.month, publish_date.day)
        publish_since_epoch = (publish_datetime - epoch).total_seconds() * 1000

        actual_rating = float(review.rating)
        smooth_rating = float(prev_smooth_rating + SMOOTH_FACTOR * (actual_rating-prev_smooth_rating))

        if publish_date > one_spark_unit_ago:
            one_spark_unit_back.append(smooth_rating)
        elif publish_date > two_spark_units_ago:
            two_spark_units_back.append(smooth_rating)
        elif publish_date > three_spark_units_ago:
            three_spark_units_back.append(smooth_rating)
        elif publish_date > four_spark_units_ago:
            four_spark_units_back.append(smooth_rating)
        elif publish_date > five_spark_units_ago:
            five_spark_units_back.append(smooth_rating)

        if publish_date > one_6mo_unit_ago:
            one_6mo_unit_back.append(smooth_rating)
        elif publish_date > two_6mo_units_ago:
            two_6mo_units_back.append(smooth_rating)
        elif publish_date > three_6mo_units_ago:
            three_6mo_units_back.append(smooth_rating)
        elif publish_date > four_6mo_units_ago:
            four_6mo_units_back.append(smooth_rating)

        if publish_date > one_12mo_unit_ago:
            one_12mo_unit_back.append(smooth_rating)
        elif publish_date > two_12mo_units_ago:
            two_12mo_units_back.append(smooth_rating)
        elif publish_date > three_12mo_units_ago:
            three_12mo_units_back.append(smooth_rating)
        elif publish_date > four_12mo_units_ago:
            four_12mo_units_back.append(smooth_rating)

        if publish_date > one_24mo_unit_ago:
            one_24mo_unit_back.append(smooth_rating)
        elif publish_date > two_24mo_units_ago:
            two_24mo_units_back.append(smooth_rating)
        elif publish_date > three_24mo_units_ago:
            three_24mo_units_back.append(smooth_rating)
        elif publish_date > four_24mo_units_ago:
            four_24mo_units_back.append(smooth_rating)

        ylpline_ratings.append([publish_since_epoch, round(smooth_rating, 2)])
        review_ratings.append([publish_since_epoch, actual_rating])

        prev_smooth_rating = smooth_rating

    sparkline = get_sparkline([five_spark_units_back, four_spark_units_back, three_spark_units_back, two_spark_units_back, one_spark_unit_back])
    sparkline_6mo = get_sparkline([four_6mo_units_back, three_6mo_units_back, two_6mo_units_back, one_6mo_unit_back])
    sparkline_12mo = get_sparkline([four_12mo_units_back, three_12mo_units_back, two_12mo_units_back, one_12mo_unit_back])
    sparkline_24mo = get_sparkline([four_24mo_units_back, three_24mo_units_back, two_24mo_units_back, one_24mo_unit_back])

    return ylpline_ratings, review_ratings, smooth_rating, sparkline, sparkline_6mo, sparkline_12mo, sparkline_24mo
示例#8
0
def get_business_reviews(business, num_reviews=0, task=None, debug=False):
    """
    Fetches business reviews for a single business and saves it to the database.

    This is a computationally intensive function that makes multiple requests
    to the Yelp website and collect reviews for a business. Yelp restricts
    the number of reviews per page, so multiple threads must call multiple
    requests to collect all business reviews. If a business has 500 reviews,
    and Yelp only shows 20 reviews per page, 25 http requests must be made to
    Yelp.

    In the background of each thread, it parses the response HTML content to
    get the relevant review data for consumption.

    Warning: You must not set the # of max thread workers to be unreasonably
    high. This will cause an out of memory error in production and cause the
    production server to crash and restart.

    :param business: The business to fetch reviews for.
    :param num_reviews: If provided, will only get the number of reviews,
    most recent first. Otherwise, will fetch all reviews of a business.
    :param debug: Debug mode is on if True.
    :return: Nothing. Reviews are saved into the database.
    """
    FUNC_NAME = inspect.currentframe().f_code.co_name
    do_not_store_latest_pull = False
    print("task for " + business.id + " is: " + str(task))
    if debug:
        business = Business.objects.get(id='girl-and-the-goat-chicago')
    if not business:
        return
    """
    if task:
        fake_fetch(task)
        return
    """

    latest_review_date = None
    todays_date = datetime.today().date()

    # Don't bother fetching if we fetched recently already.
    if business.latest_review_pull and business.latest_review_pull + \
            timedelta(days=DAYS_TO_DELAY_FETCHING) >= todays_date:
        print("Hitting too recent to fetch")
        log(MODULE_NAME, FUNC_NAME,
            '%s | Hitting too recent to fetch' % business.id)
        return

    if Review.objects.filter(business_id=business.id).exists():
        latest_review_date = Review.objects.filter(
            business_id=business.id).latest('publish_date').publish_date

    if num_reviews <= 0:
        num_reviews = get_num_reviews_for_business(business)
    num_requests = num_reviews // NUM_REVIEWS_PER_PAGE
    if num_reviews % NUM_REVIEWS_PER_PAGE != 0:
        num_requests += 1

    log(MODULE_NAME, FUNC_NAME, '%s | Concurrent pull start' % business.id)
    concurrency_pull_start = default_timer()
    urls = create_urls_list(business.url, num_reviews)
    session = FuturesSession(max_workers=MAX_WORKERS)
    futures = []
    responses = []

    # Multi-thread requests and HTML parsing
    for i, url in enumerate(urls):
        future = session.get(url,
                             background_callback=parse_results_in_background)
        futures.append(future)

    # Wait for callbacks to finish
    print('Response received...', end="", flush=True)
    for i, future in enumerate(futures, 1):
        response = future.result()
        responses.append(response)
        progress = round(i * 90 / futures.__len__(), 1)
        if task:
            task.update_state(state='PROGRESS', meta={'current': progress})
        print(str(i) + ": " + str(response.status_code) + " " +
              str(response.reason) + '...',
              end="",
              flush=True)

    concurrency_pull_end = default_timer()
    log(
        MODULE_NAME, FUNC_NAME, '%s | Concurrent pull end. Duration: %s '
        'seconds' %
        (business.id, str(concurrency_pull_end - concurrency_pull_start)))
    # Save reviews to database
    log(MODULE_NAME, FUNC_NAME, '%s | Begin response processing' % business.id)
    print("Processing response (%s total)..." % num_requests,
          end="",
          flush=True)

    process_start = default_timer()
    for ctr, response in enumerate(responses, 1):
        print("%s..." % ctr, end="", flush=True)
        if response:
            if response.status_code == 200:
                save_reviews(response, business, latest_review_date)
            else:
                do_not_store_latest_pull = True
                log_error(
                    MODULE_NAME, FUNC_NAME,
                    'Fetch unsuccessful. Got an HTTP status code of: %s' %
                    str(response.status_code))
        progress = 90 + (round(i * 10 / responses.__len__(), 1))
        if task:
            print("theres a task!")
            task.update_state(state='PROGRESS', meta={'current': progress})
    process_end = default_timer()
    log(
        MODULE_NAME, FUNC_NAME, '\nProcessing response duration: %s seconds' %
        str(process_end - process_start))

    # Update business that we fetched reviews today
    if not do_not_store_latest_pull:
        business.latest_review_pull = todays_date
        business.save()
示例#9
0
def get_business_reviews(business, num_reviews=0, task=None, debug=False):
    """
    Fetches business reviews for a single business and saves it to the database.

    This is a computationally intensive function that makes multiple requests
    to the Yelp website and collect reviews for a business. Yelp restricts
    the number of reviews per page, so multiple threads must call multiple
    requests to collect all business reviews. If a business has 500 reviews,
    and Yelp only shows 20 reviews per page, 25 http requests must be made to
    Yelp.

    In the background of each thread, it parses the response HTML content to
    get the relevant review data for consumption.

    Warning: You must not set the # of max thread workers to be unreasonably
    high. This will cause an out of memory error in production and cause the
    production server to crash and restart.

    :param business: The business to fetch reviews for.
    :param num_reviews: If provided, will only get the number of reviews,
    most recent first. Otherwise, will fetch all reviews of a business.
    :param debug: Debug mode is on if True.
    :return: Nothing. Reviews are saved into the database.
    """
    FUNC_NAME = inspect.currentframe().f_code.co_name
    do_not_store_latest_pull = False
    print("task for " + business.id + " is: " + str(task))
    if debug:
        business = Business.objects.get(id='girl-and-the-goat-chicago')
    if not business:
        return

    """
    if task:
        fake_fetch(task)
        return
    """

    latest_review_date = None
    todays_date = datetime.today().date()

    # Don't bother fetching if we fetched recently already.
    # if business.latest_review_pull and business.latest_review_pull + \
    #         timedelta(days=DAYS_TO_DELAY_FETCHING) >= todays_date:
    #     print("Hitting too recent to fetch")
    #     log(MODULE_NAME, FUNC_NAME, '%s | Hitting too recent to fetch' %
    #         business.id)
    #     return

    if Review.objects.filter(business_id=business.id).exists():
        latest_review_date = Review.objects.filter(
            business_id=business.id
        ).latest('publish_date').publish_date

    if num_reviews <= 0:
        num_reviews = get_num_reviews_for_business(business)
    num_requests = num_reviews // NUM_REVIEWS_PER_PAGE
    if num_reviews % NUM_REVIEWS_PER_PAGE != 0:
        num_requests += 1

    log(MODULE_NAME, FUNC_NAME, '%s | Concurrent pull start' % business.id)
    concurrency_pull_start = default_timer()
    urls = create_urls_list(business.url, num_reviews)
    session = FuturesSession(max_workers=MAX_WORKERS)
    futures = []
    responses = []

    # Multi-thread requests and HTML parsings
    for i, url in enumerate(urls):
        future = session.get(url,
                             background_callback=parse_results_in_background)
        futures.append(future)

    # Wait for callbacks to finish
    print('Response received...', end="", flush=True)
    for i, future in enumerate(futures, 1):
        response = future.result()
        responses.append(response)
        progress = round(i * 90 / futures.__len__(), 1)
        if task:
            task.update_state(state='PROGRESS', meta={'current': progress})
        print(str(i) + ": " + str(response.status_code) + " " + str(response.reason) + '...', end="", flush=True)

    concurrency_pull_end = default_timer()
    log(MODULE_NAME, FUNC_NAME, '%s | Concurrent pull end. Duration: %s '
                                'seconds' % (business.id, str(concurrency_pull_end-concurrency_pull_start)))
    # Save reviews to database. Has debugging code.
    log(MODULE_NAME, FUNC_NAME, '%s | Begin response processing' % business.id)
    print("Processing response (%s total)..." % num_requests, end="", flush=True)

    process_start = default_timer()
    for ctr, response in enumerate(responses, 1):
        print("%s..." % ctr, end="", flush=True)
        if response:
            if response.status_code == 200:
                save_reviews(response, business, latest_review_date)
            else:
                do_not_store_latest_pull = True
                log_error(MODULE_NAME, FUNC_NAME, 'Fetch unsuccessful. Got an HTTP status code of: %s'
                          % str(response.status_code))
        progress = 90 + (round(i * 10 / responses.__len__(), 1))
        if task:
            print("theres a task!")
            task.update_state(state='PROGRESS', meta={'current': progress})
    process_end = default_timer()
    log(MODULE_NAME, FUNC_NAME, '\nProcessing response duration: %s seconds'
        % str(process_end-process_start))

    # Update business that we fetched reviews today
    if not do_not_store_latest_pull:
        business.latest_review_pull = todays_date
        business.save()
示例#10
0
def get_review_graph_data(business, debug=False):
    """
    Calculates the ylp rating along with graphing data and returns them.

    :param business: Business to get rating data for
    :param debug: Debug mode is on if True
    :return: A tuple that returns: timeline list of ylpline_ratings,
    Yelp review ratings, the overall smoothed rating, recent trend sparkline,
    6-month sparkline, 12-month sparkline, and 24-month sparkline.
    """
    FUNC_NAME = inspect.currentframe().f_code.co_name

    if debug:
        business = Business.objects.filter(id='whitewater-excitement-lotus-2')
    elif not business:
        log_error(MODULE_NAME, FUNC_NAME,
                  '%s | No business input provided' % business.id)
        return

    reviews = Review.objects.filter(business=business).order_by('publish_date')

    ylpline_ratings = []  # Detail graph - ylpline ratings
    review_ratings = []  # Detail graph - review ratings
    review = reviews[0]
    publish_date = review.publish_date
    actual_rating = float(review.rating)
    smooth_rating = float(review.rating)

    today = datetime.today().date()

    # sparkline
    one_spark_unit_ago = today - timedelta(days=18)
    two_spark_units_ago = one_spark_unit_ago - timedelta(days=18)
    three_spark_units_ago = two_spark_units_ago - timedelta(days=18)
    four_spark_units_ago = three_spark_units_ago - timedelta(days=18)
    five_spark_units_ago = four_spark_units_ago - timedelta(days=18)

    # 6mo
    one_6mo_unit_ago = today - timedelta(days=45)
    two_6mo_units_ago = one_6mo_unit_ago - timedelta(days=45)
    three_6mo_units_ago = two_6mo_units_ago - timedelta(days=45)
    four_6mo_units_ago = three_6mo_units_ago - timedelta(days=45)

    # 12mo
    one_12mo_unit_ago = today - timedelta(days=92)
    two_12mo_units_ago = one_12mo_unit_ago - timedelta(days=92)
    three_12mo_units_ago = two_12mo_units_ago - timedelta(days=92)
    four_12mo_units_ago = three_12mo_units_ago - timedelta(days=92)

    # 24mo
    one_24mo_unit_ago = today - timedelta(days=183)
    two_24mo_units_ago = one_24mo_unit_ago - timedelta(days=183)
    three_24mo_units_ago = two_24mo_units_ago - timedelta(days=183)
    four_24mo_units_ago = three_24mo_units_ago - timedelta(days=183)

    # Graph takes x-axis time in seconds since epoch
    publish_datetime = datetime(publish_date.year, publish_date.month,
                                publish_date.day)
    epoch = datetime(1970, 1, 1)
    publish_since_epoch = (publish_datetime - epoch).total_seconds() * 1000

    ylpline_ratings.append([publish_since_epoch, smooth_rating])
    review_ratings.append([publish_since_epoch, actual_rating])
    prev_smooth_rating = smooth_rating

    one_spark_unit_back = []
    two_spark_units_back = []
    three_spark_units_back = []
    four_spark_units_back = []
    five_spark_units_back = []

    one_6mo_unit_back = []
    two_6mo_units_back = []
    three_6mo_units_back = []
    four_6mo_units_back = []

    one_12mo_unit_back = []
    two_12mo_units_back = []
    three_12mo_units_back = []
    four_12mo_units_back = []

    one_24mo_unit_back = []
    two_24mo_units_back = []
    three_24mo_units_back = []
    four_24mo_units_back = []

    # Completed index 0 review before this loop. Now repeat the algorithm over
    # the collection of reviews.
    for review in reviews[1:]:
        publish_date = review.publish_date
        publish_datetime = datetime(publish_date.year, publish_date.month,
                                    publish_date.day)
        publish_since_epoch = (publish_datetime - epoch).total_seconds() * 1000

        actual_rating = float(review.rating)
        smooth_rating = float(prev_smooth_rating + SMOOTH_FACTOR *
                              (actual_rating - prev_smooth_rating))

        if publish_date > one_spark_unit_ago:
            one_spark_unit_back.append(smooth_rating)
        elif publish_date > two_spark_units_ago:
            two_spark_units_back.append(smooth_rating)
        elif publish_date > three_spark_units_ago:
            three_spark_units_back.append(smooth_rating)
        elif publish_date > four_spark_units_ago:
            four_spark_units_back.append(smooth_rating)
        elif publish_date > five_spark_units_ago:
            five_spark_units_back.append(smooth_rating)

        if publish_date > one_6mo_unit_ago:
            one_6mo_unit_back.append(smooth_rating)
        elif publish_date > two_6mo_units_ago:
            two_6mo_units_back.append(smooth_rating)
        elif publish_date > three_6mo_units_ago:
            three_6mo_units_back.append(smooth_rating)
        elif publish_date > four_6mo_units_ago:
            four_6mo_units_back.append(smooth_rating)

        if publish_date > one_12mo_unit_ago:
            one_12mo_unit_back.append(smooth_rating)
        elif publish_date > two_12mo_units_ago:
            two_12mo_units_back.append(smooth_rating)
        elif publish_date > three_12mo_units_ago:
            three_12mo_units_back.append(smooth_rating)
        elif publish_date > four_12mo_units_ago:
            four_12mo_units_back.append(smooth_rating)

        if publish_date > one_24mo_unit_ago:
            one_24mo_unit_back.append(smooth_rating)
        elif publish_date > two_24mo_units_ago:
            two_24mo_units_back.append(smooth_rating)
        elif publish_date > three_24mo_units_ago:
            three_24mo_units_back.append(smooth_rating)
        elif publish_date > four_24mo_units_ago:
            four_24mo_units_back.append(smooth_rating)

        ylpline_ratings.append([publish_since_epoch, round(smooth_rating, 2)])
        review_ratings.append([publish_since_epoch, actual_rating])

        prev_smooth_rating = smooth_rating

    sparkline = get_sparkline([
        five_spark_units_back, four_spark_units_back, three_spark_units_back,
        two_spark_units_back, one_spark_unit_back
    ])
    sparkline_6mo = get_sparkline([
        four_6mo_units_back, three_6mo_units_back, two_6mo_units_back,
        one_6mo_unit_back
    ])
    sparkline_12mo = get_sparkline([
        four_12mo_units_back, three_12mo_units_back, two_12mo_units_back,
        one_12mo_unit_back
    ])
    sparkline_24mo = get_sparkline([
        four_24mo_units_back, three_24mo_units_back, two_24mo_units_back,
        one_24mo_unit_back
    ])

    return ylpline_ratings, review_ratings, smooth_rating, sparkline, sparkline_6mo, sparkline_12mo, sparkline_24mo