def main_2(expt_name, fn1, fn2, feature='sift', **template_information):
    import os
    kw = {'fn1':fn1, 'fn2':fn2, 'feature':feature, 'template_information':template_information}
    imgQ, imgT, detector, matcher, temp_inf = expt_setting(**kw)

    print('using', feature)
    temp_inf = slac.TmpInf(**template_information)
    a = temp_inf.tmp_img
    try:
        with Timer('Lording pickle'):
            splt_k, splt_d = slac.affine_load_into_mesh(os.path.splitext(temp_inf.tmp_img)[0],
                                                        temp_inf.get_splitnum())
    except ValueError as e:
        print(e)
        print('If you need to save {} to file as datavase. ¥n'
              + ' Execute /Users/tiwasaki/PycharmProjects/makedb/make_split_combine_featureDB_from_templates.py')
        with Timer('Detection and dividing'):
            splt_k, splt_d = slac.affine_detect_into_mesh(detector, temp_inf.get_splitnum(),
                                                           imgQ, simu_param='default')

    img = imgQ.copy()
    def plot_kps(img, keypoints):
        if not len(keypoints) == 0:
            out_img = cv2.drawKeypoints(img, keypoints.pop(0), None, color=(0,255,0))
            return plot_kps(out_img, keypoints)
        return img
    out_img = plot_kps(img, splt_k)
    output_dir = slac.myfm.setup_output_directory(expt_name, "plots")
    cv2.imwrite(os.path.join(output_dir, 'analyse_'+temp_inf.tmp_img+'.png'), out_img)
def expt_setting(**kwargs):
    import sys
    imgQ = cv2.imread(kwargs['fn1'], 0)
    imgT = cv2.imread(kwargs['fn2'], 0)
    detector, matcher = init_feature(kwargs['feature'])
    if imgQ is None:
        print('Failed to load fn1:', kwargs['fn1'])
        sys.exit(1)

    if imgT is None:
        print('Failed to load fn2:', kwargs['fn2'])
        sys.exit(1)

    if detector is None:
        print('unknown feature:', kwargs['feature'])
        sys.exit(1)

    temp_inf = slac.TmpInf(**kwargs['template_information'])
    return imgQ, imgT, detector, matcher, temp_inf
示例#3
0
    print("FEATURE: {}".format(feature_name))

    scols = 8
    srows = 8
    h, w = imgQ.shape[:2]
    template_fn, ext = os.path.splitext(os.path.basename(fn1_full))
    template_information = {
        "_fn": "tmp.png",
        "template_img": template_fn,
        "_cols": w,
        "_rows": h,
        "_scols": scols,
        "_srows": srows,
        "_nneighbor": 4
    }
    temp_inf = splta.TmpInf(**template_information)

    try:
        with splta.Timer('Lording pickle'):
            splt_kpQ, splt_descQ = splta.affine_load_into_mesh(
                template_fn, temp_inf.get_splitnum())
    except ValueError as e:
        print(e.args)
        print('If you need to save {} to file as datavase. ¥n' +
              ' Execute makedb/make_split_combine_featureDB_from_templates.py')
        with splta.Timer('Detection and dividing'):
            splt_kpQ, splt_descQ = splta.affine_detect_into_mesh(
                detector, temp_inf.get_splitnum(), imgQ, simu_param='default')

    m_skQ, m_sdQ, m_k_num, merged_map = splta.combine_mesh_compact(
        splt_kpQ, splt_descQ, temp_inf)
            sys.exit(1)

        template_full_fn = myfsys.get_template_file_full_path_(template_fn)
        try:
            imgQ = get_img(template_full_fn)
        except ValueError as e:
            print(e)
            print('テンプレートがないだけなので続ける')
            continue
        template_information = {
            "_fn": "tmp.png",
            "template_img": template_fn,
            "_cols": 800,
            "_rows": 600,
            "_scols": 8,
            "_srows": 8,
            "_nneighbor": 4
        }
        temp_inf = slac.TmpInf(**template_information)
        pool = ThreadPool(processes=cv2.getNumberOfCPUs())
        with Timer('calculate Keypoints Descriptors'):
            kp, des = asift.affine_detect(detector, imgQ, pool=pool)
        ##キーポイントを出力する
        index = []
        for p in kp:
            temp = (p.pt, p.size, p.angle, p.response, p.octave, p.class_id)
            index.append(temp)
        pickle_path = myfsys.get_pikle_path(fn)
        with open(pickle_path, mode='wb') as f:
            pickle.dump((index, des), f)
def main_1(expt_name, fn1, fn2, feature='sift', **template_information):
    kw = {'fn1':fn1, 'fn2':fn2, 'feature':feature, 'template_information':template_information}
    imgQ, imgT, detector, matcher, temp_inf = expt_setting(**kw)

    print('using', feature)
    temp_inf = slac.TmpInf(**template_information)
    try:
        with Timer('Lording pickle'):
            splt_k, splt_d = slac.affine_load_into_mesh(os.path.splitext(temp_inf.tmp_img)[0],
                                                        temp_inf.get_splitnum())
    except ValueError as e:
        print(e)
        print('If you need to save {} to file as datavase. ¥n'
              + ' Execute /Users/tiwasaki/PycharmProjects/makedb/make_split_combine_featureDB_from_templates.py')
        with Timer('Detection and dividing'):
            splt_k, splt_d = slac.affine_detect_into_mesh(detector, temp_inf.get_splitnum(),
                                                          imgQ, simu_param='default')

    mesh_k_num = np.array([len(keypoints) for keypoints in splt_k]).reshape(temp_inf.get_mesh_shape())

    # mean, median, max, min, peak2peak, standard_deviation, variance = analysis_num(mesh_k_num)
    print("plot mesh keypoint heatmap")
    al_vals = slac.analysis_num(mesh_k_num)
    print("平均, 中央値, 最大値, 最小値, 値の範囲, 標準偏差, 分散")
    print("{0:4f}, {1:4f}, {2:4d}, {3:4d}, {4:4d}, {5:4f}, {6:4f}".format(*al_vals))

    output_dir = slac.myfm.setup_output_directory(expt_name, "plots")
    plt.figure(figsize=(16, 12))
    sns.set("paper", "whitegrid", "dark", font_scale=3)
    h = sns.heatmap(mesh_k_num, annot=True, fmt='d', cmap='Blues')
    h.set(xlabel="x")
    h.set(ylabel="y")
    h.set(title="Heatmap of keypoint amounts -" + temp_inf.tmp_img)
    h_fig = h.get_figure()
    pp = PdfPages(os.path.join(output_dir, 'analyse_'+temp_inf.tmp_img+'.pdf'))
    h_fig.savefig(pp, format='pdf')

    df = slac.analysis_kp(splt_k, temp_inf)

    # with Timer('plotting Kernel De'):
    #     for i in range(temp_inf.get_splitnum()):
    #         ax = sns.kdeplot(df.query('mesh_id == ' + str(i))['x'], df.query('mesh_id == ' + str(i))['y'], shade=True)
    #         ax.set(ylim=(600, 0))
    #         ax.set(xlim=(0, 800))
    #         ax.set(xlabel="x")
    #         ax.set(ylabel="y")
    #         ax.set(title="Kernel density estimation")

    plt.figure(figsize=(16, 12))
    sns.set("paper", "whitegrid", "dark", font_scale=3)
    g = sns.kdeplot(df['x'], df['y'], shade=True, shade_lowest=False)
    g.set(ylim=(600, 0))
    g.set(xlim=(0, 800))
    g.set(xlabel="Width of image")
    g.set(ylabel="Height of image")
    g.set(title="Kernel density estimation-"+temp_inf.tmp_img)
    g_fig = g.get_figure()
    g_fig.savefig(pp, format='pdf')

    # logger.info('show mesh map')
    # plt.figure()
    # sns.set("paper", "whitegrid", "dark", font_scale=1.5)
    # mesh_map = temp_inf.get_mesh_map()
    # mmap_ax = sns.heatmap(mesh_map, annot=True, fmt="d")
    # mmap_ax.set(xlabel="x")
    # mmap_ax.set(ylabel="y")
    # mmap_ax.set(title="Mesh map -" + temp_inf.tmp_img)
    # mmap_ax_fig = h.get_figure()
    # mmap_ax_fig.savefig(pp, format='pdf')

    with Timer('merging'):
        msplt_k, msplt_d, mmesh_k_num, mmesh_map = slac.combine_mesh(splt_k, splt_d, temp_inf)

    logger.info('show merged mesh map')
    plt.figure(figsize=(16, 12))
    sns.set("paper", "whitegrid", "dark", font_scale=3)
    merged_map_ax = sns.heatmap(mmesh_map, annot=True, fmt="d")
    merged_map_ax.set(xlabel="x")
    merged_map_ax.set(ylabel="y")
    merged_map_ax.set(title="Merged mesh map -" + temp_inf.tmp_img)
    merged_map_ax_fig = merged_map_ax.get_figure()
    merged_map_ax_fig.savefig(pp, format='pdf')

    plt.figure(figsize=(16, 12))
    sns.set("paper", "whitegrid", "dark", font_scale=3)
    mh = sns.heatmap(mmesh_k_num, annot=True, fmt='d', cmap='Blues')
    mh.set(xlabel="x")
    mh.set(ylabel="y")
    mh.set(title="Heatmap of merged keypoint amounts -" + temp_inf.tmp_img)
    mh_fig = mh.get_figure()
    mh_fig.savefig(pp, format='pdf')

    # pp.savefig()
    pp.close()