calculate_significance=False,
                    title='Difference')
                cs = contour_plot(
                    2,
                    2,
                    np.mean(data_am[NINO34_plus & IOBM_plus, :, :], axis=0) -
                    np.mean(data_am[NINO34_plus & IOBM_minus, :, :], axis=0),
                    clevs,
                    lats_var,
                    lons_var,
                    None,
                    mask=None,
                    calculate_significance=False,
                    title='Difference')
            ax = plt.subplot(gs[3, :])
            make_plots.colorbar(ax, cs, orientation='horizontal')
            #save figure
            if decadal_mean == True:
                save_file_name = figure_dir + '/IOBM_NINO34_composites_' + var_name + '_decadal_' + model_name + '_' + season + '.png'
            else:
                save_file_name = figure_dir + '/IOBM_NINO34_composites_' + var_name + '_' + model_name + '_' + season + '.png'
            print('saving to %s' % (save_file_name))
            plt.savefig(save_file_name, bbox_inches='tight')

        elif average_over_models == True:
            # add composites to arrays
            if i == 0:
                standard_lats = np.arange(-88, 88.1, 2)
                standard_lons = np.arange(0, 360.1, 2)
                n_lats, n_lons = standard_lats.shape[0], standard_lons.shape[0]
                if decadal_mean == False:
示例#2
0
                                  lats_psl,
                                  lons_psl,
                                  title=index_name + ' psl',
                                  extent=[60, 300, -30, 60])
            ax = plt.subplot(
                gs[j, 2], projection=ccrs.PlateCarree(central_longitude=180.))
            cs_pr = contour_plot(86400 * regress_coeffs_pr,
                                 clevs_pr,
                                 lats_pr,
                                 lons_pr,
                                 title=index_name + ' pr',
                                 cmap='RdBu',
                                 extent=[60, 150, 20, 50])

        ax = plt.subplot(gs[j + 1, 0])
        make_plots.colorbar(ax, cs_SST)
        ax = plt.subplot(gs[j + 1, 1])
        make_plots.colorbar(ax, cs_psl)
        ax = plt.subplot(gs[j + 1, 2])
        make_plots.colorbar(ax, cs_pr)

        # save
        #plt.subplots_adjust(hspace=0.4)
        save_file_name = figure_dir + '/regress_SST_indices_circulation_' + model_name + '_' + season + '.png'
        print('saving to %s' % (save_file_name))
        plt.savefig(save_file_name, bbox_inches='tight')

    except:
        message = 'Error, skipping model ' + model_name
        print(message)