space = np.random.randn(4)*0.18+1
print space
img_all = []
label_all= []
for s in space:
    require = copy(RE)
    require[0] = [ int(round(n*s)) for n in require[0] ]
    require[1] = [ int(round(n*s)) for n in require[1] ]
    center_scale = np.random.choice(space, 1)
    center = (int(round(128*center_scale)), int(round(128*center_scale)))
    print center, require

    m = Maker(require)
    a = np.random.randint(360)
    m.generate(5, a, center=center)
        
    img = [ i[None,None,None,:,:] for i in m.imgs ]
    label = [ l[None,None,None,:,:] for l in m.labels]
    img = np.concatenate(img, axis=0)
    label = np.concatenate(label, axis=0)
    img_all.append(img)
    label_all.append(label)

img_all = np.concatenate(img_all, axis=1)
img_all =   np.transpose(img_all, (1,0,2,3,4))
label_all = np.concatenate(label_all,axis=1)
label_all = np.transpose(label_all, (1,0,2,3,4))

print img_all.shape
assert img_all.shape[-2:] == (256,256)
示例#2
0
                        })
                    elif ds_name == 'three_fruits':
                        paths = easydict.EasyDict({
                            'datasetFile':
                            os.path.join(dirs_suffix, 'datasets',
                                         'three_fruits'),
                            'textDir':
                            'text_c10',
                            'maxEpochs':
                            '1000'
                        })

                    maker = Maker(datasetFile=paths.datasetFile,
                                  textDir=paths.textDir,
                                  checking_folder=checking_folder,
                                  lang=lang,
                                  client_txt=desc,
                                  pre_trained_gen=os.path.join(
                                      dirs_suffix, 'checkpoints',
                                      ds_name + '_cls_test',
                                      'gen_' + paths.maxEpochs + '.pth'),
                                  pre_trained_disc=os.path.join(
                                      dirs_suffix, 'checkpoints',
                                      ds_name + '_cls_test',
                                      'disc_' + paths.maxEpochs + '.pth'),
                                  ID=ID)

                    maker.generate()
                os.remove(filepath)
    time.sleep(0.5)
    print('Listening folder ' + rootdir + '...')
space = np.random.randn(4) * 0.18 + 1
print space
img_all = []
label_all = []
for s in space:
    require = copy(RE)
    require[0] = [int(round(n * s)) for n in require[0]]
    require[1] = [int(round(n * s)) for n in require[1]]
    center_scale = np.random.choice(space, 1)
    center = (int(round(128 * center_scale)), int(round(128 * center_scale)))
    print center, require

    m = Maker(require)
    a = np.random.randint(360)
    m.generate(5, a, center=center)

    img = [i[None, None, None, :, :] for i in m.imgs]
    label = [l[None, None, None, :, :] for l in m.labels]
    img = np.concatenate(img, axis=0)
    label = np.concatenate(label, axis=0)
    img_all.append(img)
    label_all.append(label)

img_all = np.concatenate(img_all, axis=1)
img_all = np.transpose(img_all, (1, 0, 2, 3, 4))
label_all = np.concatenate(label_all, axis=1)
label_all = np.transpose(label_all, (1, 0, 2, 3, 4))

print img_all.shape
assert img_all.shape[-2:] == (256, 256)